بررسی فیتوشیمیایی و فعالیت آنتی‌اکسیدانی فرآورده‌های جانبی اسانس‌گیری ریزوم هیبریدهای زنبق ‏آلمانی (‏Iris germanica L.‎‏)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار، پژوهشکده ملی گل و گیاهان زینتی، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج، محلات، ایران

4 دانشیار، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

گونه­های گیاه ایریس (Iris) به عنوان منبع غنی از ایزوفلاونوئیدها شناخته می­شوند. زنبق آلمانی (Iris germanica L.) یکی از مهم­ترین انواع زنبق­های ریش­دار است، که در طب سنتی با نام ایرسا شناخته می­شود. در این پژوهش، میزان کل ترکیبات فنولی و فعالیت آنتی‌اکسیدانی پساب به دست آمده در طول فرآیند اسانس­گیری 34 نمونه ریزوم زنبق آلمانی (6 نمونه والد، 27 نمونه هیبرید و 1 نمونه تجاری) اندازه‌گیری شد. نمونه­های زنبق آلمانی از پژوهشکده ملی گل و گیاهان زینتی واقع در شهر محلات جمع‌آوری و نمونه تجاری از بازار خریداری شدند. بعد از استخراج اسانس‌ از پساب در بالن، نمونه­ برداری شد. میزان فنل کل نمونه‌ها به روش فولین­سیکالتیو، فلاونوئید به روش آلومینیوم کلرید و فعالیت آنتی‌اکسیدانی (DPPH و FRAP) اندازه­گیری شد. نتایج تجزیه واریانس نشان داد که همه صفات اندازه­گیری شده، تحت تاثیر نوع هیبرید بود که این تاثیر در تمامی صفات معنی‌دار بود (01/0P<). نتایج مقایسه میانگین نشان داد که نمونه­های با رنگ گل­های ارغوانی و بنفش بیشترین میزان فنل و فلاونوئید کل را داشته و به دنبال آن بالاترین میزان فعالیت آنتی­اکسیدانی را دارند. به عبارت دیگر، بیشترین میزان فلاونوئید (22/113 میلی­گرم معادل کوئرستین در گرم وزن خشک) و فعالیت آنتی­اکسیدانی (DPPH) (73/817 میلی­گرم معادل TBHQ در گرم وزن خشک) در نمونه P6 (والد ارغوانی) و بیشترین میزان فنل کل (31/261 میلی­گرم معادل اسیدگالیک در گرم وزن خشک) در نمونه P3 (والد بنفش) مشاهده شد. در کل، پساب حاصل از اسانس گیاه زنبق آلمانی، بعنوان منبعی مناسب و ارزان جهت به دست آوردن آنتی‌اکسیدان‌های طبیعی می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phytochemical evaluation and antioxidant activity of essential oil byproducts of ‎German iris hybrids and parents (Iris germanica L.) ‎

نویسندگان [English]

  • Ghader Ghasemi 1
  • Mahdi Ayyari 2
  • Mohammad-Hossein Azimi 3
  • Mohammad-Taghi Ebadi 4
1 Ph.D. Candidate,, Faculty of Agriculture, Tarbiat Modares University (TUM), Tehran, ‎Iran
2 Assistant Professor, Faculty of Agriculture, Tarbiat Modares University (TUM), Tehran, Iran
3 Assistant Professor, National Institute of Ornamental Plants (NIOP), Horticultural Sciences Research Institute, Agricultural ‎Research, Education and Extension Organization (AREEO), Mahallat, I.R. Iran
4 Associate Professor, Faculty of Agriculture, Tarbiat Modares University (TUM), Tehran, Iran
چکیده [English]

Iris species are known to be a rich source of isoflavonoids. Iris germanica L. is one of the most important species of bearded irises which is known as Irsa in traditional medicine. In this study, the amount of phenolic compounds and antioxidant activity of the waste obtained during the essential oil extraction process of 34 samples of German iris rhizomes (6 parent samples, 27 hybrid samples and 1 commercial sample) were evaluated. Iris samples were collected from the Ornamental Plants Research Center (OPRC) in Mahallat city and commercial sample were purchased from the market. After extracting the EO, samplings were carried out using the extract in balloon. The phenol content was measured by Folin-Ciocalteu method, flavonoid by Aluminum-chloride method and antioxidant activity with DPPH and FRAP assay. The results of variance analysis showed that all measured factors were affected by the type of hybrid, which was significant in all factors (P<0.01). The results of mean comparison showed that samples with purple and violet flower colors had the highest amount of phenol and flavonoid, followed by the highest level of antioxidant activity. In other words, the highest amount of flavonoid (113.22 mg QUE/g DW plant) and antioxidant activity (DPPH) (817.73 mg TBHQ/gDW plant) was observed in sample P6 (purple parent) and the highest amount of phenol content (261.31 mg GAE/g DW plant) was observed in sample P3 (violet parent). In general, the water residues from the Iris EO extraction can be used as a suitable and cheap source for obtaining natural antioxidants.

کلیدواژه‌ها [English]

  • By-product
  • Iris
  • Phytochemical
  • Natural antioxidant
  • Waste‎
  1. Alirezalu, A., Ahmadi, N., Salehi, P., Sonboli, A., Alirezalu, K., Mousavi Khaneghah, A., Barba, F. J., Munekata, P. E., & Lorenzo, J. M. (2020). Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus) fruits species for potential use in food applications. Foods, 9(4), 436.
  2. Asghar, S. F., Habib-ur-Rehman, Atta-ur-Rahman, & Choudhary, M. I. (2010). Phytochemical investigations on Iris germanica. Natural Product Research, 24(2), 131-139.
  3. Azimi, M. H., Jozghasemi, S., & Barba-Gonzalez, R. (2018). Multivariate analysis of morphological characteristics in Iris germanica Euphytica, 214(9), 1-11.
  4. Basgedik, B., Ugur, A., & Sarac, N. (2014). Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Industrial Crops and Products, 61, 526-530.
  5. Borneo, R., León, A. E., Aguirre, A., Ribotta, P., & Cantero, J. J. (2009). Antioxidant capacity of medicinal plants from the province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chemistry, 112(3), 664-670.
  6. Capocasa, F., Scalzo, J., Mezzetti, B., & Battino, M. (2008). Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chemistry, 111(4), 872-878.
  7. Celano, R., Piccinelli, A. L., Pagano, I., Roscigno, G., Campone, L., De Falco, E., Russo, M., & Rastrelli, L. (2017). Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Research International, 99, 298-307.
  8. Chang, Q., Zuo, Z., Harrison, F., & Chow, M. S. S. (2002). Hawthorn. The Journal of Clinical Pharmacology, 42(6), 605-612.
  9. Choudhary, M. I., Naheed, S., Jalil, S., & Alam, J. M. (2005). Effects of ethanolic extract of Iris germanica on lipid profile of rats fed on a high-fat diet. Journal of ethnopharmacology, 98(1-2), 217-220.
  10. Dawidowicz, A. L., Wianowska, D., & Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra (antioxidant properties of extracts). LWT-Food Science and Technology, 39(3), 308-315.
  11. Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia Food Chemistry, 113(2), 557-562.
  12. Ebrahimzadeh, M. A., Hosseinimehr, S. J., Hamidinia, A., & Jafari, M. (2008). Antioxidant and free radical scavenging activity of Feijoa sellowiana fruits peel and leaves. Pharmacologyonline, 1, 7-14.
  13. Farzadkia, M., FallahJokandan, S., & YeganeBadi, M. (2015). Compost management in Iran: opportunities and challenges. Journal of Environmental Health Enginering, 2(3), 211-223.
  14. Fattahi, M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Zamani, Z., & Palazon, J. (2013). Identification and quantification of leaf surface flavonoids in wild-growing populations of Dracocephalum kotschyi by LC–DAD–ESI-MS. Food Chemistry, 141(1), 139-146.
  15. Fraga-Corral, M., García-Oliveira, P., Pereira, A. G., Lourenço-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3), 614.
  16. Gao, Q. H., Wu, P. T., Liu, J. R., Wu, C. S., Parry, J. W., & Wang, M. (2011). Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba) cultivars grown in loess plateau of China. Scientia Horticulturae, 130(1), 67-72.
  17. Ghasemi, G., Alirezalu, A., & Rahmanzadeh Ishkeh, S. (2019). Evaluation and comparison of phytochemical and antioxidant capacity of some small fruits collected from Urmia Khan-Dareh-si region. Journal of Food Science and Technology, 16(86), 15-29. (In Farsi).
  18. Ghasemi, G., Alirezalu, A., Ishkeh, S. R., & Ghosta, Y. (2021). Phytochemical properties of essential oil from Artemisia sieberi Besser (Iranian accession) and its antioxidant and antifungal activities. Natural Product Research, 35(21), 4154-4158.
  19. Golmohamadi, Z., Jalili, M., & Rashidi, L. (2020). Study of fatty acids profile, antioxidant activity properties and polyphenol compounds of loquat leaf. Iranian Journal of Biosystems Engineering, 50(4), 863-872. (In Farsi).
  20. Hacıbekiroğlu, I., & Kolak, U. (2015). Screening antioxidant and anticholinesterase potential of Iris albicans Arabian Journal of Chemistry, 8(2), 264-268.
  21. Hashempour, A., Ghazvini, R. F., Bakhshi, D., Ghasemnezhad, M., Sharafti, M., & Ahmadian, H. (2010). Ascorbic acid, anthocyanins, and phenolics contents and antioxidant activity of ber, azarole, raspberry, and cornelian cherry fruit genotypes growing in Iran. Horticulture, Environment and Biotechnology, 51(2), 83-88.
  22. Hassan Sultan, T., Noroozi, M., & Amoozegar, M. A. (2016). A survey on total carotenoids, chlorophyll a and b and also antioxidant activity of derived from four strain of green alga isolated from the Golestan coasts, (Caspian Sea). New Cellular and Molecular Biotechnology Journal, 6(24), 31-36. (In Farsi).
  23. Ibrahim, S. R., Mohamed, G. A., & Al-Musayeib, N. M. (2012). New constituents from the rhizomes of Egyptian Iris germanica Molecules, 17(3), 2587-2598.
  24. Jéhan, H., Courtois, D., Ehret, C., Lerch, K., & Petiard, V. (1994). Plant regeneration of Iris pallida and Iris germanica L. via somatic embryogenesis from leaves, apices and young flowers. Plant Cell Reports, 13(12), 671-675.
  25. Koczka, N., Stefanovits-Bányai, É., & Ombódi, A. (2018). Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines, 5(3), 84.
  26. Kohlein, F. (1987). Iris. Timber Press, Portland, Oregon.
  27. Koley, T. K., Kaur, C., Nagal, S., Walia, S., & Jaggi, S. (2016). Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana). Arabian Journal of Chemistry, 9, S1044-S1052.
  28. Kordi Tamandani. E., Jafar, V., & Moharam, V. (2014). In vitro production of secondary metabolites in Cicer spiroceras using elicitors. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 3(2), 48.
  29. Lichtenthaler H. K, (1987). Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymology, 148, 350-383.
  30. Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365-373.
  31. Mishra, K.P., Ganju, L., Sairam, M., Banerjee, P.K., & Sawhney, R.C. (2008). A review of high throughput technology for the screening of natural products. Biomedicine & Pharmacotherapy, 62(2), 94-98.
  32. Mocan, A., Zengin, G., Mollica, A., Uysal, A., Gunes, E., Crişan, G., & Aktumsek, A. (2018). Biological effects and chemical characterization of Iris schachtii extracts: A new source of bioactive constituents. Food and Chemical Toxicology, 112, 448-457.
  33. Mohadjerani, M. (2012). Antioxidant activity and total phenolic content of Nerium oleander grown in North of Iran. Iranian Journal of Pharmaceutical Research, 11(4), 1121-1126. (In Farsi).
  34. Mohamed, G. A., Ibrahim, S. R., & Ross, S. A. (2013). New ceramides and isoflavone from the Egyptian Iris germanica rhizomes. Phytochemistry Letters, 6(3), 340-344.
  35. Nadaroğlu, H., Demir, Y., & Demir, N. (2007). Antioxidant and radical scavenging properties of Iris germanica. Pharmaceutical Chemistry Journal, 41(8), 409-415.
  36. Nakajima, J. I., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. Journal of Biomedicine and Biotechnology, 2004(5), 241-247.
  37. Nasim, S., Baig, I., Jalil, S., Orhan, I., Sener, B., & Choudhary, M. I. (2003). Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. Journal of Ethnopharmacology, 86(2-3), 177-180.
  38. Nouri, S., Kiasat, A. R., Kolahi. M., Mirzajani, R., & Seyednejad, S. M. (2016). Phytochemical studies, antioxidants and various optimization methods in order to determine the best method of extracting curcumin extract ethanol from the plant Curcuma longa Eco-phytochemical Journal of Medicinal Plants, 4(3), 1-11. (In Farsi).
  39. Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum The Scientific World Journal, 2020.
  40. Pourmorad, F., Hosseinimehr, S. J., & Shahabimajd, N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5(11), 1142-1145.
  41. Rahman, A., Nasim, S., Baig, I., Jalil, S., Orhan, I., Sener, B., & Choudhary, M. I. (2003). Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. Journal of Ethnopharmacology, 86(2-3), 177-180.
  42. Rossa, M. M., de Oliveira, M. C., Okamoto, O. K., Lopes, P. F., & Colepicolo, P. (2002). Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Journal of Applied Phycology, 14(3), 151-157.
  43. Solimine, J., Garo, E., Wedler, J., Rusanov, K., Fertig, O., Hamburger, M., Atanassov, I., & Butterweck, V. (2016). Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia, 108, 13-19.
  44. Tamilselvi, N., Krishnamoorthy, P., Dhamotharan, R., Arumugam, P., & Sagadevan, E. (2012). Analysis of total phenols, total tannins and screening of phytocomponents in Indigofera aspalathoides (Shivanar Vembu) Vahl ex DC. Journal of Chemical and Pharmaceutical Research, 4(6), 3259-3262.
  45. Tee, S. A., Fristiohady, A., & Yodha, A. W. M. (2021). Total phenolic and flavonoid content, antioxidant, and toxicity test with BSLT of Meistera chinensis fruit fraction from southeast Sulawesi. Borneo Journal of Pharmacy, 2(1), 1-6.
  46. Tohidi, B., Rahimmalek, M., & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153-161.
  47. Trivellini, A., Lucchesini, M., Maggini, R., Mosadegh, H., Villamarin, T. S. S., Vernieri, P., Mensuali-Sodi, A., & Pardossi, A. (2016). Lamiaceae phenols as multifaceted compounds: bioactivity, industrial prospects and role of “positive-stress”. Industrial Crops and Products, 83, 241-254.
  48. Ullah, F., Ayaz, M., Sadiq, A., Hussain, A., Ahmad, S., Imran, M., & Zeb, A. (2016). Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Natural Product Research, 30(12), 1440-1444.
  49. Wollenweber, E., Stevens, J. F., Klimo, K., Knauft, J., Frank, N., & Gerhäuser, C. (2003). Cancer chemopreventive in vitro activities of isoflavones isolated from Iris germanica. Planta Medica, 69(01), 15-20.
  50. Wollinger, A., Perrin, E., Chahboun, J., Jeannot, V., Touraud, D., & Kunz, W. (2016). Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis leaves determined by DPPH assays. Comptes Rendus Chimie, 19(6), 754-765.
  51. Zhang, H., YANG, Y. F., & ZHOU, Z. Q. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17(1), 256-263.
  52. Žugić, A., Đorđević, S., Arsić, I., Marković, G., Živković, J., Jovanović, S., & Tadić, V. (2014). Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Industrial Crops and Products, 52, 519-527.