اندازه‌گیری محتوای برخی متابولیت‌های ثانویه زیست فعال و برخی فلانونوئیدهای گیاه سلمکی ‏‏(‏Atriplex patula L.‎‏) در مراحل مختلف فنولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 دانش‌آموخته کارشناسی ارشد، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 استادیار، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

در این آزمایش تأثیر مراحل فنولوژیکی گیاه بر برخی ترکیبات زیست فعال و فلاونوئیدهای روتین و کوئرستین گیاه سلمکی (Atriplex patula L.) مورد بررسی قرار گرفت. سه مرحله فنولوژیکی رویشی (هشت برگی)، گل­دهی و بذردهی به عنوان سه تیمار آزمایش لحاظ گردید. در سه مرحله فنولوژیکی برخی از ترکیبات بیوشیمایی و کوئرستین و روتین گیاه اندازه گیری شدند. نتایج نشان داد بیش­ترین و کمترین (06/2 و 88/0 میلی گرم در گرم وزن تر) میزان کلروفیل کل به ترتیب در مرحله بذر­دهی و مرحله رویشی مشاهده شد. بیشترین و کمترین میزان کلروفیل a، کلروفیل b و کاروتنوئید به ترتیب در مرحله بذر دهی و مرحله رویشی یافت شد. بیشترین مقدار فنل کل (76/132 میلی گرم اسید گالیک در 100 گرم وزن تر)، تانن کل (057/0 میلی گرم اسید تانیک در 100 گرم وزن تر) و ظرفیت آنتی­اکسیدانی (28/50 درصد) در مرحله گل­دهی و کم­ترین مقدار فنل کل (24/92 میلی گرم اسید گالیک در 100 گرم وزن تر)، تانن کل (041/0 میلی گرم اسید تانیک در 100 گرم وزن تر) و فعالیت آنتی اکسیدانی (95/16 درصد) در مرحله رویشی مشاهده شد. بیش­ترین و کمترین میزان فلاونوئید کل (05/88 و 89/35 میلی گرم روتین در 100 گرم وزن تازه) به ترتیب در مرحله بذر­دهی و رویشی مشاهده شد. بیش­ترین و کم­ترین مقدار کوئرستین به ترتیب در مرحله بذر­دهی و رویشی (05/0 و 01/0 میلی‌گرم در گرم وزن خشک) مشاهده شد. بیشترین و کمترین مقدار روتین (11/2 و 85/1 میلی گرم در گرم وزن خشک) در مرحله بذر­دهی و مرحله رویشی یافت گردید. با توجه به میزان بالای برخی از ترکیبات بیوشیمیایی در گیاه سلمکی می‌توان در آینده از پتاسیل دارویی این گیاه بهره برد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the content of some bioactive secondary metabolites and flavonoids in ‎Atriplex patula at different phenological stages

نویسندگان [English]

  • Mohammad Sayyari 1
  • Sameyea Ghaeloni 2
  • Ali Azizi 3
1 Associate Professor, Faculty of Agriculture, BuAli Sina University, Hamedan, ‎Iran
2 Graduated M. Sc, Faculty of Agriculture, BuAli Sina University, Hamedan, Iran
3 Assistant Professor, Faculty of Agriculture, BuAli Sina University, Hamedan, Iran
چکیده [English]

This experiment was performed to determine the content of some bioactive compounds and flavonoids of Atriplex patula L. at different phenological stages. Three phonological stages, including vegetative (eight-leaf), flowering and seed production stages, were considered as three treatments of experiment. Some biochemical parameters and also rutin and quercetin were measured at different growth stages. The results showed that the highest (2.06 mg g-1) and lowest (0.88 mg g-1) total chlorophyll content was observed at seed production and vegetative stages, respectively. Also, the highest chlorophyll ‘a’, chlorophyll ‘b’ and carotenoids contents were observed in the seed production and vegetative stages, respectively. The highest amount of total phenols (132.76 mg gallic acid 100g-1 FW), total tannin (0.057 mg tannic acid 100g-1 FW) and antioxidant capacity (50.28%) were found at flowering stage, while the lowest amount of total phenols (92.24 mg gallic acid 100g-1 FW), total tannin (0.041 mg tannic acid 100g-1 FW) and antioxidant capacity (16.95%) were observed at vegetative stage. The highest and lowest (88.05 and 35.95 mg rutin 100g-1 FW) amount of total flavonoid was found at seed production and vegetative stages. The highest and lowest quercetin levels were observed in seed production and vegetative stages (0.05 and 0.01 mg g-1 dry weight), respectively. Also, the highest and lowest (2.11 and 1.85 mg g-1 dry weight) amount of rutin were found in the seed production and vegetative stages. Due to the high amount of some biochemical compounds in Atriplex patula, the medicinal potential of this plant can be used in the future.

کلیدواژه‌ها [English]

  • Antioxidant capacity
  • quercetin
  • rutin
  • tannin
  • total phenolics
  1. Ainsworth, E. A. & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877.
  2. Alirezaie Noghgondar, M., Azizi, M., Neamati, S. H., Rezvani Moghaddam, P. & Rezazadeh, S. (2016). Variation of some phytochemical compound in shoot and root of Rumex turcomanicus at different phenological stages. Journal of Medicinal Plants, 15(58), 25-36. (In Farsi).
  3. Bassett, I. J. & Munro, D. B. (1987). The biology of Canadian Weeds: 81. Atriplex patula, A. prostrata Boucher ex DC., and A. rosea L. Canadian Journal of Plant Science, 67(4), 1069-1082.
  4. Bedreag, C. F. G., Trifan, A., Bucur, L. A., Arcus, M., Tebrencu, C., Miron, A. & Costache, I. I. (2014). Chemical and antioxidant studies on Crataegus pentagyna leaves and flowers. Romanian Biotechnological Letters, 19(6), 9859.
  5. Boutaoui, N., Zaiter, L., Benayache, F., Benayache, S., Cacciagrano, F., Cesa, S., Secci, D., Carradori, S., Giusti, A. M. & Campestre, C. (2018). Atriplex mollis aerial parts: Extraction procedures, secondary metabolites and color analysis. Molecules, 23(8), 1962.
  6. Candan, N. & Tarhan, L. (2003). Changes in chlorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turkish Journal of Chemistry, 27(1), 21-30.
  7. Clauser, M., Dall'Acqua, S., Loi, M. C. & Innocenti, G. (2013). Phytochemical investigation on Atriplex halimus from Sardinia. Natural Product Research, 27(20), 1940-1944.
  8. Dadáková, E., Vrchotová, N., Tříska, J. & Děkanová, Z. (2013). Content of phenolic substances in the selected species of the Chenopodiaceae family. Journal of Agrobiology, 30(2), 127-135.
  9. Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus and Rumex obtusifolius L. at different growth stages. Antioxidants, 8(7), 237.
  10. Gobbo-Neto, L. & Lopes, N. P. (2007). Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova, 30(2), 374-381.
  11. Hosseini, B., Nikhkhah Amirabad, H., Fattah, M. & Gosta, Y. (2017). Effect of altitude and different phonological stages on essential composition and antioxidant activity of Ferula angulata (Schlecht.) Boiss. from Dena altitudes. Eco-phytochemical Journal of Medicinal Plants, 5(1), 16-29. (In Farsi).
  12. Jakovljevic, Z. D., Stankovic, S. M. & Topuzovic, D. M. (2013). Seasonal variability of Chelidonium majus secondary metabolites content and antioxidant activity. EXCLI Journal, 12, 260.
  13. Kanani, M., Chamani, E., Shokouhian, A. A. & Torabi, G. M. (2021). Investigation on quality changes of damask rose essential oil during different phenology stages in Oroumieh region. Iranian Journal of Horticultural Science 51(4), 955-963. (In Farsi).
  14. Kreft, S., Štrukelj, B., Gaberščik, A. & Kreft, I. (2002). Rutin in buckwheat herbs grown at different UV‐B radiation levels: comparison of two UV spectrophotometric and an HPLC methods. Journal of Experimental Botany, 53(375), 1801-1804.
  15. Kulkarni, A. P. & Aradhya, S. M. (2005). Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry, 93(2), 319-324.
  16. Kumar, B. A., Lakshman, K., Jayaveera, K., Krishna, N. V., Manjunath, M. & Suresh, M. (2009). Estimation of rutin and quercetin in Amaranthus viridis by HPLC. Asian Journal of Experimental Science, 23(1), 51-54.
  17. Lefsrud, M., Kopsell, D., Wenzel, A. & Sheehan, J. (2007). Changes in kale (Brassica oleracea var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny. Scientia Horticulturae, 112(2), 136-141.
  18. Li, Y., Guo, C., Yang, J., Wei, J., Xu, J. & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254-260.
  19. Mirzahoseini, M., Sadat Noori, S. A., Amanzadeh, Y. & Ghorbani Javid, M. (2017). Evaluation of phenological characteristics and amount of essential oils in some native ecotypes of Ajowan (Trachyspermum ammi). Iranian Journal of Medicinal and Aromatic Plants Research, 33(3), 435-448. (In Farsi).
  20. Mozaffarian, V. (2012). Recognition of medicinal and aromatic plants of Ira Farhang Mo'aser Publication. (In Farsi).
  21. Naghiloo, S., Movafeghi, A., Delazar, A., Nazemiyeh, H., Asnaashari, S. & Dadpour, M. R. (2012) Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus (Fabaceae). EXCLI Journal, 11, 436.
  22. Pelden, D. & Meesawat, U. (2019). Foliar idioblasts in different-aged leaves of a medicinal plant (Annona muricata). Songklanakarin Journal of Science & Technology, 41(2).
  23. Saberi, M., Niak Nahad Ghermakhar, H., Heshmati, G. A., Barani, H., & Shahreyari, A. R. (2018). Evaluation of the content and performance of some active ingredients extracts of Citrullus colocynthis organs from two habitats of Sistan and Balochestan province in different growth stages [Research]. Plant Ecosystem Conservation, 5(11), 49-63. (In Farsi).
  24. Sellami, I. H., Maamouri, E., Chahed, T., Wannes, W. A., Kchouk, M. E. & Marzouk, B. (2009). Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana). Industrial Crops and Products, 30(3), 395-402.
  25. Shams, Z., Eshghi, S., Tafazoli, E. & Gharaghani, A. (2021). Assessment of antioxidant activity, phenolic components, photosynthesis pigments ‎and fruit quantitative traits in four blackberry (Rubus sanctus) accessions at ‎different fruit maturity stages.Iranian Journal of Horticultural Science, 52(1), 153-169. (In Farsi).
  26. Srivarathan, S., Netzel, M. E., Thi Phan, A. D. & Sultanbawa, Y. (2020). Exploring the nutritional profile and bioactive potential of Australian grown saltbush (Atriplex). Multidisciplinary Digital Publishing Institute Proceedings, 36(1), 83.
  27. Stevens, J., Senaratna, T. & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 49(1), 77-83.
  28. Taira, S. & Ono, M. (1996). Reduction of astringency in persimmon caused by adhesion of tannins to cell wall fragments. I International Persimmon Symposium 436.
  29. Zhang, R., Wang, Y. R., Baskin, J. M., Baskin, C. C., Luo, K., & Hu, X. W. (2016). Germination and persistence in soil of the dimorphic diaspores of Atriplex centralasiatica. Seed Science Research, 26(3), 273-283.
  30. Zribi, I., Ghezal, N., Sbai, H., Richard, G., Fauconnier, M. L. & Haouala, R. (2019). Biochemical composition of Tunisian Nigella sativa L. at different growth stages and assessment of the phytotoxic potential of its organic fractions. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(2), 205-212.