بررسی اثر چند رقم انگور بومی به‌عنوان پایه پیوندی و تریاکانتانول بر فیزیولوژی پیوندک انگور ‏بیدانه سفید (‏Vitis vinifera L.‎‏) تحت تنش خشکی‏

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکتری، پژوهشکده ملی انگور و کشمش، دانشگاه ملایر ‏

2 دانشیار، دانشکده کشاورزی، دانشگاه ملایر

3 استاد، دانشکده کشاورزی، دانشگاه بوعلی، همدان

4 استادیار، دانشکده علوم، دانشگاه ملایر

10.22059/ijhs.2019.269570.1539

چکیده

استفاده از پایه‌های انگور متحمل به تنش خشکی و کاربرد روش‌های به باغی مانند استفاده از تنظیم‌کننده‌های رشد می‌تواند برای دستیابی به روش‌های مقابله با کم‌آبی مؤثر باشد. به همین منظور پژوهشی به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در سال 1397 در شرایط گلخانه‌ای جهت بررسی اثر تنظیم‌کننده رشد تریاکانتانول بر ویژگی‌های فیزیولوژیکی نهال‌های انگور بیدانه سفید پیوند شده روی دو رقم بومی در شرایط خشکی انجام شد. تیمارها پایه در دو سطح (خوشناو، سرخک قوچان و نهال رقم بیدانه سفید (خودریشه))، تنش خشکی در سه سطح پتانسیل آب خاک در محدوده 2/0- (شاهد)، 7/0- و 5/1- مگاپاسکال و سه غلظت تنظیم‌کننده تریاکانتانول (صفر، 50 و 100 میکرومولار) بودند. صفات اندازه‌گیری شده نسبت وزن خشک به سطح برگ (LMA)، میزان پایداری غشای سلولی (MSI)، کلروفیل کل، پرولین، گلایسین بتائین، محتوای نسبی آب برگ، فعالیت آنزیم کاتالاز (CAT) و  پراکسیداز (POX) بودند. براساس نتایج حاصل از این پژوهش تنش خشکی باعث کاهش معنی‌دار LMA (25 درصد)، MSI (5 درصد)، کلروفیل (20 درصد) و RWC (5 درصد) گردید و تیمارهای تریاکانتانول منجر به افزایش معنی‌دار LMA (20 درصد)، MSI (3/4 درصد)، کلروفیل (14 درصد)، RWC (5/2 درصد)، گلایسین بتائین (27 درصد)، پرولین (22 درصد) و فعالیت آنزیم‌های آنتی‌اکسیدانی کاتالاز (23 درصد) و پراکسیداز (8 درصد) گردید. نهال‌های پیوندی با پایه خوشناو نسبت به شاهد نتایج بهتری را نشان داد و با اضافه شدن تیمار های تریاکانتانول نیز صفات مناسب برای تحمل تنش خشکی بهبود یافتند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of some cultivars of native grapevine as rootstocks and triachenetanol on the ‎physiology of ‘Bidaneh Sefid’ grapevine scion (Vitis vinifera L.), under drought ‎stress

نویسندگان [English]

  • Wahab Asadi 1
  • Mousa Rasouli 2
  • Mansour Gholami 3
  • masoume maleki 4
1 Ph. D. Candidate, Iranian Research Institute in Grape and Raisin, Malayer University, Malayer, Iran
2 Associate Professor, Facutly of Agirculture, Malayer University, Malayer, Iran
3 Professor, Facutly of Agirculture, Bu-Ali Sina University, Hamedan, Iran
4 Assistant Professor, Faculty of Science, Malayer University, Malayer, Iran
چکیده [English]

Use of drought tolerant grapevine rootstocks and application of garden management practices, such as the use of plant growth regulators, can be effective in achieving drought control methods. For this purpose, a factorial experiment based on a completely randomized design was conducted with three replications in greenhouse conditions in 2018 in order to study the effect of triacontanol on the physiological characteristics of grafted plantlet of grapevine on two native rootstocks of Iran under drought conditions. The treatments consisted of two rootstocks (Khoshnav, Sorkhak Ghouchan) and Bidaneh sefid (no grafting), three levels of drought stress including soil water potential of -0.2 (control), -0.7 and -1.5 MPa, and three concentrations of triacontanol (0, 50 and 100 μM). The measured traits included ratio dry weight to leaf area (LMA), membrane cell stability (MSI), total chlorophyll, proline, glycinebetaine, relative water content (RWC), catalase (CAT) and peroxidase (POX) activity. Based on the results, drought stress reduced LMA (25%), MSI (5%), chlorophyll (20%) and RWC (5%) and triacontanol treatments increased LMA (20%), MSI (4.5%), chlorophyll (14%), RWC (2.5%), glycinebetaine (27%), proline (22%), and antioxidant activity of catalase (23%) and peroxidase (8%). plantlet with Khoshnav rootstock showed better results than the control plantlet, and triacontanol improves drought tolerance in plantlets.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • grafted seedling
  • grape
  • glysinebetaine
  • proline‎
  1. Ahmadi, K., Gholizadeh, H., Ebadzadeh, H. R., Hatami, F., Hosseinpour, R., Kazemifard, R. & Abdoshah, H. (2016). Agricultural Statistics 2015, Volume 3, Publications Center of Information and Communication Technology in Ministry of Agriculture. Tehran. 253 pages.
  2. Alsina, M.M., Smart, D.R., Bauerle, T., de Herralde, F., Biel, C., Stockert, C., Negron, C. & Save, R. (2011). Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Journal of Experimental Botany, 62, 99-109.
  3. Anjum, M. A. (2011). Effect of exogenously applied spermidine on growth and physiology of citrus rootstock Troyer citrange under saline conditions. Turkish Journal of Agriculture and Forestry, 35(1), 43-53.
  4. Asadi, W., Rasouli, M., Gholami, M. & Maleki, M. (2017). Study of some morphological and physiological traits of four varieties grapes (Vitis vinifera L.) under water stress. Iranian Journal of Horticultural Science, 48 (4), 977-990. (in Farsi)
  5. Azizi, H., Jalilimarandi, R., Hasani, A. & Dolati bane, H. (2009). Effect of drought stress on some morphological and physiological characters of three grapevine cultivar. In: Proceedings of 6th Iranian Horticultural science Congress. 12-15 July, University of Gilan, Rasht, Iran, pp 527.
  6. Bates, L. S., Woldren, R. P. & Teare, I. D. (1975). Rapid determination of free proline for water stress studies. Journal of Plant and Soil, 39, 205-207.
  7. Bianchi, D., Grossi, D., Tincani, T. G., Di Lorenzo, G. S., Brancadoro, L. & ustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340.
  8. Bota, J., Stasyk, O., Flexas, J. & Medrano, H. (2004). Effect of water stress on partitioning of 14C-labelled photosynthates in Vitis vinifera. Functional Plant Biology, 31(7), 697-708.
  9. Carbonneau, A. (1985). The early selection of grapevine rootstocks for resistance to drought conditions. American Journal of Enology and Viticulture, 36, 195-198.
  10. Chaves, M. M. & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Experimental Botany, 55, 2365-2384.
  11. Chen, X. Yuan, H. Chen, R. Zhu, L. & He, G. (2003). Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regulation, 40, 249-256.
  12. Conesa, M. R., de la Rosa, J. M., Domingo, R., Ba˜non, S. & Pérez-Pastor, A. (2016). Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson Seedless) grown in pots. Scientia Horticulturae, 202, 9-16.
  13. Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil, 364, 145-158.
  14. Esteban, M., Villanueva, M. & Lissarrague, J. (2001). Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifera L.) grape berries during ripening. Journal of the Science of Food and Agriculture, 4, 490-420.
  15. FAO. (2017). FAOSTAT database results. http://faostat.Fao.org.faostat. Servlet.
  16. Galmes, J., Flexas, J., Save, R. & Medrano, H. (2007). Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant and Soil, 290(1-2), 139-155.
  17. Ghaderi, N., Talaei, A. R., Ebadi, A. & Lesani, H. (2010). Study of some physiological characteristics in ‘Sahani’, ‘Bidane-sefid’ and ‎‘Farkhii’ grapes during drought stress and their subsequent recovery. PhD Studies Dissertation, University of Tehran, Department of Horticulture. (in Farsi)
  18. Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
  19. Grieve, C. M. & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil, 70, 303-307.
  20. Hemeda, H. M. & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetables extracts. Journal of Food Science, 55(1), 184-185.
  21. Jacobs, S. D. (2010). Effect of rootstock and water stress on gas exchange, water relations, and water-use efficiency in petite sirah grapevines. PhD Dissertation. California State University, USA.
  22. Jalili marandi, R., Hassani, A., Dolati baneh, H., Azizi, H. & Haji taghiloo, R. (2011). Effect of different levels of soil Moisture on the morphological and physiological characteristics of three grape cultivars (Vitis vinifera L.). Iranian Journal of Horticultural Science, 42, 31-40. (in Farsi)
  23. Kantar, M., Lucas, S. J. & Budak, H. (2011). Drought Stress: molecular genetics and genomics approaches. Advances in Botanical Research, 57, 445-493.
  24. Kennedy, J. A. (2008). Grape and wine phenolics: Observations and recent findings. Ciencia e Investigacion Agraria, 35(2), 107-120.
  25. Koundouras, S., Tsialtas, I. T., Zioziou, E. & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems and Environment, 128(1), 86-96.
  26. Kumaravelu, G., Livingstone, V. D. & Ramanujam, M. (2000). Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biologia Plantarum, 43, 287-290.
  27. Lichtenthaler, H. K. & Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. Food Analytical Chemistry Protocols, F4.3.1-F4.3.8.
  28. Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H. & Schubert, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level a physiological and molecular update. Functional Plant Biology, 37, 98-16.
  29. Mehri, H. R., Ghobadi, S. B., Baninasab, Ehsanzadeh, P. & Gholami, M. (2014). Study of some physiological and morphological responses of four Iranian grape cultivars to drought stress in vitro. Journal of Plant Process and Function, 10(3), 115-125.
  30. Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezian, N. & Kulandaivelu, G. (1995). Effects of triacontanol in flooded Erythrina variegate seedlings, 1: Changes in growth, photosynthetic pigments and biomass productivity. Photosynthetica. (Czech Republic).
  31. Muthuchelian, K., Murugan, C. R., Nedunchezian, N. & Kulandaivelu, G. (1997). Photosynthesis and growth of Erythrina variegate as affected by water stress and triacontanol. Photosynthetica, 33, 241-248.
  32. Naeen, M., Khan, M. M. A., Idrees, M. & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Menta arvensis L. Plant Growth Regulation, 65, 195-206.
  33. Okuma, E., Soeda, K., Tada, M. & Murata, Y. (2000). Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Science and Plant Nutrition, 46, 257-263.
  34. Ozden, M., Demirel, U. & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119, 163-168.
  35. Perveen, S., Shahbaz, M. & Ashraf, M. (2014). Triacontanol induced changes in growth, yield, leaf water relations, antioxidative defense system and some key osmoprotectants in bread wheat (Triticum aestivum L.) under saline stress. Turkish Journal of Bototany, 38, 896-913.
  36. Ricardo, da silva, J. (1997). Anthocyanins and proanthocyanidins in grepes and wines. Their primordial role in enology. Proceedings of the First Symposium in ino Analytica Scientia.
  37. Ries, S. K., Wert, V., Sweeley, C. C. & Leavit, R. A. (1977). Triacontanol: a new naturally occurring plant growth regulator. Science, 195, 1339-1341.
  38. Sabir, P., Ashraf, M. & Akram, N. (2011). Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. Journal of Agronomy and Crop Science, 197, 340-347.
  39. Scharwies, J. D. & S. D. yerman. (2016). Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Functional Plant Biology, 44(3), 324-338.
  40. Sheng, C. X., Yong, P. L., Jin, H., Ya, J. G., Wen, G. M., Yun, Y. Z. & Shui, J. Z. (2010). Responses of Antioxidant enzymes to chilling stress in tobacco seedlings, Agricultural Sciences in China, 9(11), 1594-1601.
  41. Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M. & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum, 52(3), 573-576.
  42. Taiz, L. & Zeiger, E. (2006). Plant Physiology. Fourth edition. Publishers Sunderland, Massachusetts. 738 p.
  43. Talaei, A. R., Ghaderi, N., Ebadi, A. & Lesani, H. (2012). Biochemical responses of grape cvs Sahani and Bidane-Sefid, subjected to progressive drought. Iranian Journal of Horticultural Science, 42, 301-308. (in Farsi)
  44. Verma, A., Malik, C. P., Gupta, V.K. & Bajaj, B.K. (2011). Effects of in vitro triacontanol on growth, antioxidant enzymes and photosynthetic characteristics in Arachis hypogaea L. Brazillan Journal of Plant Physiology, 23, 271-277.
  45. Singh, M., Khan, M. M. A., Moinuddin & Naeem, M. (2011). Augmentation of nutraceuticals, productivityand qualityof ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosystem, 146 (1), 106-113.
  46. Yang, X. & Lu, C. (2005). Photosynthesis is improved by exogenous glycinebetaine in salt stressed maize plants. Plant Physiology, 124, 343-352.
  47. Yıldırım, K., Yağcı, A. & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268.
  48. Yong, Z., Hao-Ru, T. & Ya, L. (2008). Variation in antioxidant enzyme activities of two straw berry cultivars with short-term low temperature stress. Agricultural Sciences, 4(4), 456-462.
  49. Yordanov, I., Velikova, V. & Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38(2), 171-186.