بررسی تأثیر تنش شوری بر برخی از شاخص‌های مورفولوژیکی و فیزیولوژیکی گل محمدی ژنوتیپ ‏کاشان ‏

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

این پژوهش به‌منظور بررسی تأثیر تنش شوری ناشی از کلرید سدیم (0، 4، 8 و 12 دسی‌زیمنس بر متر) بر برخی صفات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی گل محمدی در کشت گلدانی در قالب طرح بلوک­های کامل تصادفی با چهار تکرار، سه گلدان به‌عنوان یک واحد آزمایشی (در مجموع 48 گلدان) در فضای آزاد به‌مدت دو سال طی سال­های 1394-1396انجام شد و نتایج پایان سال دوم مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که تنش شوری موجب کاهش وزن تر و خشک برگ و شاخساره، همچنین محتوای نسبی آب برگ و شاخه شد. مقایسه میانگین­ها نشان داد که محتوای کلروفیل­ها و کاروتنوئیدها با افزایش سطح شوری رابطه عکس داشت، به‌طوری‌که کمترین مقدار کلروفیل­ها و کاروتنوئیدها در تیمار 12 دسی‌زیمنس بر متر مشاهده شد. فعالیت آنزیم‌های آنتی اکسیدانی سوپراکسید دیسموتاز (SOD)، کاتالاز (CAT) و گایاکول پراکسیداز (GPX) و محتوای فنل کل برگ‌ها با افزایش تنش شوری افزایش یافت. همچنین نتایج نشان داد که با افزایش تنش شوری میزان پروتئین‌های محلول کاهش یافت و کمترین مقدار در تیمار شوری 12 دسی‌زیمنس بر متر مشاهده شد. با توجه به نتایج به‌دست‌آمده تنش شوری با تأثیر بر ویژگی‌های مورفولوژیکی و فیزیولوژیکی گل‌محمدی، موجب کاهش رشد گیاهان شده و به نظر می­رسد این گیاه قادر است سطح شوری هشت دسی‌زیمنس بر متر را تحمل کند. 
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of salinity stress on some morphology and physiology indices of Damask Rose ‎Kashan genotype ‎

نویسندگان [English]

  • Mohammad Omidi 1
  • Azizollah Khandan-Mirkohi 2
  • Mohsen Kafi 3
  • Zabihollah Zamani 3
1 Ph.D. Candidate, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran‎
2 Assistant Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

To investigate the effect of NaCl salinity (0, 4, 8 and 12 dS m-1) on some morpho-physiological indices of Rosa damascenea Kashan genotype, a factorial pot experiment was designed based on randomized complete block design with four replications and three pots per replication (with total of 48 pots) on open air countineued for two years, and results of the second year data are reported. The results showed that salinity stress reduced fresh and dry weight of leaves and shoots. Also, the relative water content (RWC) of leaf and shoot decreased under salinity stress. Mean comparison showed that chlorophylls and carotenoids content were inversely associated with increasing salinity levels. The lowest levels of chlorophyll and carotenoids were observed in 12 dS m-1 treatment. Antioxidant enzymes activity such as superoxide dismutase (SOD), catalase (CAT) and guaiacolytic peroxidase (GPX) increased by increasing salt stress, although the lowest activity was observed in control treatment. Total phenol content of the leaves was also affected by increased salinity stress, but there was no significant difference between treatments. In addition, the results showed that by increasing salinity stress, the amount of soluble proteins decreased and its lowest amount was observed with 12 dS m-1 treatment. According to the results, salinity stress reduced plant growth by its effects on physiological and biochemical characteristics of Rosa damascena. Thus, it seems that the Damask Rose can tolerate a salinity level of up to 8 dS m-1, without detrimental effects on plant growth.

کلیدواژه‌ها [English]

  • Antioxidants
  • Chlorophyll
  • Drought stress
  • electrolyte leakage
  • Rosa damascena
  1. Appel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373-399.
  2. Agarwal, S. & Pandey, V. (2004) Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia. Biologia Plantarum, 48, (4), pp. 555-560.
  3. Ahmad, P., Azooz, M. M. and Prasad, M. N. V. (2013). Salt Stress in Plants, Signalling, Omics and Adaptations. New York: Springer, USA.
  4. Aebi, H. (1984) Catalase in vitro. Methods Enzymology, 105, 121-126.
  5. Ali, E. F., Bazaid, S.A. & Hassan, F. A. S. (2014). Salinity tolerance of Taif roses by Gibberellic acid (GA3). International Journal of Science and Research, 3(11), 184-192.
  6. Ashraf, M., Athar, H. R., Harris, P. J. C. & Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45-110.
  7. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254.
  8. Bernstein, L. & Francisco, L. E. (1972). Salt tolerance of ornamental shrubs and ground cover. Journal of the American Society for Horticultural Science, 97, 550-556.
  9. Bor, M., Ozdemir, F & Turkan, I. (2003). The effect of salt stress on lipid peroxidant and antioxidant in leave of suger beet (Beta vulgar L.) and wild beet (Beta maritime L.). Plant Science, 164, 77-84.
  10. Baily, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14, 93-107.
  11. Cai, X., Niu, G., Starman, T. & Hall, C. (2014). Response of six garden roses (Rosa× hybrida L.) to salt stress. Scientia Horticulturae, 168, 27-32.
  12. Cabrera, R. I., Solís-Pérez, A. R. & Sloan, J. J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44(7), 2000-2008.
  13. Cuin, T. A. & Shabala, S. (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environment, 30, 875-885.
  14. Chookhampaeng, S. (2011). The effect of salt stress on growth, chlorophyll content proline content and antioxidant enzymes of pepper seedling. European Journal of Scientific Research, 49, 103-109.
  15. Demiral, T. & Turkan, I. (2005). Comparative lipid peroxidation, antioxidant defense sysems and proline content in roots of two rice cultivars differing in salt tolerance. Environment Experiment Botany, 53, 247-257.
  16. Foyer, C. H., Valadier, M., Migge, A. & Becker, T. (1998). Drought-induced effects on nitrate reductase activity and mRNA on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology, 177, 283-292.
  17. Giannopolitis, N. & Ries, S.K. (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
  18. Gorji-Chakespari, A., Nikbakht, A. M., Sefidkon, F., Ghasemi-Varnamkhasti, M. & Valero, E. L. (2017). Classification of essential oil composition in Rosa damascena Mill. genotypes using an electronic nose. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 27-34.
  19. Goreta, S., Bučević‐Popović, V., Pavela‐Vrančić, M. & Perica, S. (2007). Salinity‐induced changes in growth, superoxide dismutase activity, and ion content of two olive cultivars. Journal of Plant Nutrition and Soil Science, 170(3), 398-403.
  20. Hu, L., Li, H., Pang, H. & Fu, J. (2012). Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal of Plant Physiology, 169(2), 146-156.
  21. Huang, C. J., Wei, G., Jie, Y. C., Xu, J. J., Zhao, S. Y., Wang, L. C. & Anjum, S. A. (2015). Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica, 53(3), 455-463.
  22. Hura, T., Hura, K., Grzesiak, M. & Rezepka, A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 Plant. Acta Physiologiae Plantarum, 29, 103-113.
  23. He, Y., Liu, W., Cao, M., Huai, B. Xu. & Huang, B. (2005). Effect of salicylic acid on heat tolerance associated with antioxidant metabolism in the Kentucky Bluegrass. Crop Science, 45, 988-995.
  24. Heidari Sharif Abad, H. (2001). Plants and Salinity. Research Institute of Forests and Rangelands Press. Tehran. (in Farsi)
  25. Isfendiyaroglu, M. & Zeker, E. (2002). The relation between phenolic compound and seed dormancy in Pistacia spp. Grempa Seym Pistachios and Almond. Chieres Optins Mediterraneenes, 56, 232-277.
  26. Katerji, N., Van Horn, J. W., Hamdy, A., Karan, F. & Mastrovtilli. M. (1994). Effect of salinity on emergence and on aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Journal of Plant Growth Regulation, 30, 157-161.
  27. Katerji, N., Van Hoorn, J.W., Hamdy, A., Mastrorilli, M. & Mou Karzel, E. (1997). Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricultural Water Management, 34, 57-69.
  28. Kaya, C., Higgs, D., Ince, F., Amador, B. M., Caki, A. & Sakar, E. (2003). Ameliorative effects of potassium phosphate onsalt-stressed pepper and cucumber. Journal of Plant Nutrition, 26, 807-820.
  29. Khan, M. A., Ahmad, M.Z. & Hameed, A. (2006). Effect of sea salt and L- ascorbic acid on the seed germination of halophytes. Journal of Arid Environments, 67, 535-540.
  30. Koji, Y., Mitsuya, S., Kawasaki, M., Taniguchi, M. & Miyake, H. (2008). Salinity induced chloroplas damages in rice leaves (Oryza sativa L.) are reduced by pretreatment with methyl viologen. In: Proceedings of the 14th Ausralian Agronomy Conference, 21-25 September, p. 684.
  31. Ksouri, R., Megdiche, W., Debez, A., Falleh, M., Grignon, C. & Abdelly, C. (2007). Salinity effect on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45, 244-248.
  32. Mardani, H. & Azizi, M. (2010). Effect of salicylic acid on morphological and physiological parameter of cucumber (Cucumis Sativus cv. Super Dominus) in dry stress. Iranian Journal of Horticulture Science, 3, 321-326. (in Farsi)
  33. Momen poor, A., Imani, A. & Rezaei, H. (2015). Evolution of growth character and four element level in four genotype of almond. Iranian Journal of Horticulture Science, 46(3), 409-427. (in Farsi)
  34. Marshall, J. D. & Monserud, A.A. (2003). Foliage height influences specific leaf area of three conifer species. Canadian Journal of Forest Research, 33, 164-170
  35. McDonald, M. B. (1999). Seed deterioration: physiology, repair, and assessment. Seed Science Technology, 27(11), 177-237.
  36. Munns, R. & Tester, m. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  37. Mittova, V., Guy, M., Tal, M. & Volokita, M. (2004). Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt tolerant tomato species Lycopersicon pennellii.Journal of Experimental Botany, 55, 1105-1113.
  38. Mostafazadeh-Fard, B., Heidarpour, M., Aghakhani, A. & Feizi, M. (2007). Effects of irrigation water salinity and leaching on soil chemical properties in an arid region. International Journal of Agriculture and Biology, 3, 166-462.
  39. Niu, G., Starman, T. & Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. HortScience, 48(6), 756-761.
  40. Laspina, N. V., Groppa, M. D., Tomaro, M. L. & Benavides, M. P. (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science, 169(2), 323-330.
  41. Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In: N.J. Hoboken (Ed), Current protocols in food analytical chemistry. (pp. 431-438.) John Wiley & Sons. doi:10.1002/0471142913.faf0403s01.
  42. Oh, M. M., Carey, E. E. & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583.
  43. Orcutt, D. M. (2000). The physiology of plants under stress: soil and biotic factors. (Vol. 2). John Wiley & Sons.
  44. Plewa, M. J., Smith, S. R. & Wagner, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis, 247(1), 57-64. ‏
  45. Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349.
  46. Razali, N., Razab, R., Mat Junit, S. & Abdulaziz, A. (2008) Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale L.). Food Chemistry, 111, 38-44.
  47. Rice–Evans, C. A., Miller, N. J. & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152-159.
  48. Ranjan, R., Bohra, S. P. & Jeet, A. M. (2001). Book of plant senescence. Jodhpur Agrobios New York, 18-42.
  49. Saha, P., Chatterjee, P. & Biswas, A.K. (2010). NaCl pretreatment alleviates salt stress by enhancement of ntioxidant defense system and osmolyte accumulation in mugbean (Vigina radiate L.). Indian Journal of Experimental Biology, 48, 593-600.
  50. Said-Alahli, H. A. H. & Omer, E. A. (2011). Medicinal and aromatic plants production under salt stress. A review, Herba Polonica, 57 (1), 72-86.
  51. Saint-Lary, L., Roy, C., Paris, J. P., Martin, J. F., Thomas, O. P. & Fernandez, X. (2016). Metabolomics as a tool for the authentication of rose extracts used in flavour and fragrance area. Metabolomics, 12(3), 49.
  52. Sairam, R. K. & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.
  53. Shahbazi, M. & Kiani, A. (1990). Evolution of salinity tolerance in rapeseed, Annual Report of Biotechnology Research Institute of Seed and Plant Breeding. Karaj. Iran. (in Farsi)
  54. Sharma, S. S. & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43-50.
  55. Sharma, S. & Kumar, R. (2016). Effect of temperature and storage duration of flowers on essential oil content and composition of damask rose (Rosa× damascena Mill.) under western Himalayas. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 10-17.
  56. Shen, X., Zhou, Y., Duan, L., Li, Z., Enej, A. E. & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and Ultraviolet-B radiation. Plant Physiology, 167, 1248-1252.
  57. Sheng, M., Tang, M., Chan, H., Yang, B., Zhang, F. & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.
  58. Soundararajan, P., Manivannan, A., Ko, C. H., Muneer, S. & Jeong, B. R. (2017). Leaf physiological and proteomic analysis to elucidate silicon induced adaptive response under salt stress in Rosa hybrida ‘Rock Fire’. International Journal of Molecular Sciences, 18(8), 1768.
  59. Taiz, L. & Zeiger, E. (1998). Plant Physiology. 2nd ed. Sinauer Associates Inc., Massachusetts, 654 P.
  60. Vogt, T. (2010). Phenyl propanoid biosynthesis. Molecular Plant, 3, 2-20.
  61. Wahome, P. K., Jesch, H. H. & Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’and R. rubiginosa. Scientia Horticulturae, 87(3), 207-216.
  62. Zekri, M. & Parsons, L. R. (1990). Comparative effects of NaCl and polyethylene glycol on root disribution, growth and somatal conductance of sour orange seedlings. Plant and Soil, 129, 137-143.
  63. Zhang, S., Weng, J., Pan, J., Tu, T., Yao, S. & Xu, C. (2003). Study on the photogeneration of superoxide radicals in Photosystem II with EPR spin trapping techniques. Journal of Photosynthesis Research, 75, 41-48.