بررسی و مقایسه برخی صفات مورفولوژیک و وضعیت عناصر غذایی برگ و ریشه در برخی ‏ترکیب‌های پیوندی بادام در مقایسه با پایه‌های غیر پیوندی تحت تنش شوری ‏

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استاد، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، پژوهشکده میوه‌های سردسیری و معتدله، مؤسسه تحقیقات باغبانی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، ‏تهران، ایران

4 استادیار، تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 استادیارمرکزملی تحقیقات شوری،سازمان تحقیقات،آموزش وترویج کشاورزی،یزد،ایران

چکیده

به‌منظور بررسی اثر تنش شوری بر خصوصیات مورفولوژیکی، جذب و انتقال برخی عناصر غذایی بادام آزمایشی به‏‌‏صورت فاکتوریل در پایه طرح کاملاً تصادفی با دو عامل ترکیب پیوندی و پایه هرکدام در 4 سطح (پایه‌های رویشی GF677،GN15 و تترا و پایه بذری بادام تلخ به‏‌‏عنوان شاهد و پیوند شاهرود-12 بر روی چهار پایه ذکرشده) و عامل شوری آب آبیاری در پنج سطح (۳/۰، 2، 4، 6 و 8 دسی‌زیمنس‌ بر متر)، صورت گرفت. نتایج نشان داد افزایش شوری تا 8 دسی‌زیمنس بر متر سبب کاهش نیتروژن برگی رقم شاهرود-12 در حالت پیوندی و پایه‌های غیر‌پیوندی شد. با افزایش شوری تا 8 دسی‌زیمنس بر متر، بیشترین و کمترین کاهش در مقدار فسفر برگی نیز به‌ترتیب در پایه شاهد (غیر پیوندی) GF677 و رقم شاهرود-12 پیوندشده بر پایه GF667 مشاهده شد. افزایش میزان شوری منجر به افزایش مقدار پتاسیم برگی رقم شاهرود-12 پیوندشده بر پایه GF677 و پایه شاهد GF677 گردید. با افزایش شوری نسبت سدیم/ نیتروژن در ریشه پایه‌های شاهد افزایش یافت. در شوری 8 دسی‌زیمنس، بیشترین و کمترین نسبت سدیم/پتاسیم نیز به­ترتیب در پایه شاهد بادام تلخ بذری و شاهرود-12 پیوندشده روی پایه GF677 مشاهده شد. نتایج نشان داد ترکیب شاهرود-12 پیوندشده بر روی GF677 متحمل‌ترین ترکیب به شوری بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and comparison of some morphological traits and the status of leaf and ‎root nutrients in some grafted combinations of almond compared with non-grafted ‎rootstocks under salinity stress

نویسندگان [English]

  • Taher Saghali 1
  • Mohammad Esmaeil Amiri 2
  • Ali Imani 3
  • Hamed Rezaei 4
  • Ali Momenpour 5
1 Ph.D. Candidate, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Associate Professor, Temperate Fruit Research Center, Horticultural Research Institute, Agricultural Research, Education and ‎Extension Organization (AREEO), Tehran, Iran
4 Assistant Professor, Soil and Water Research, Agricultural Research, Education and Extention Organization, Karaj, Iran
5 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), ‎Yazd, Iran
چکیده [English]

In order to study the effect of salinity stress on morphological characteristics, absorption and transport of some nutrients of almond, a factorial experiment based on a completely randomized design with two factors including rootstock and rootstock and scion combination in four levels(vegetative rootstocks: GF677, GN15, and tetra and seedling rootstock of bitter almond as control and Shahrood-12 on four mentioned rootstocks) and salinity of irrigation water in five levels (0.3(control), 2, 4, 6 and 8 dS/m) were used. The results showed that increasing salinity up to 8 dS/m reduced the leaf nitrogen content of Shahroud-12 cultivar in grafted form and non-grafted rootstocks. With increasing salinity up to 8 dS/m, the highest and lowest reduction in leaf phosphorus content were observed on the control (non-grafted) GF677 and Shahroud-12 cultivars on GF667, respectively. Increasing salinity resulted in increased potassium content of Shahroud-12 on GF677 and non-grafted GF677 rootstock. The results also showed that with increasing salinity, the ratio of sodium/nitrogen in the root of the control rootstocks increased. In salinity of 8 dS/m the highest and lowest sodium/potassium ratio was observed in the seedling rootstock of bitter almond and Shahroud-12 on GF677 rootstock. The results showed that Shahroud-12 grafted onto GF677 was the most tolerance compound to salinity.

کلیدواژه‌ها [English]

  • abiotic stress
  • rootstock and scion
  • sodium
  • Phosphorus
  • potassium
  1. Emami, A. (1996). Plant analysis methods. Institue of Agricultural Research, Education and Development. Soil and Water Organization. (in Farsi)
  2. Bagherzadeh, T., Kavusi, H.R., Khezri, M. & Mirzaei, S. (2016). Study the protein expression pattern and some morphological and biochemical traits in white pistachio rootetocks and alnus under salinity stress. Journal of Agricultural Biotechnology, 8(3), 15-32. (in Farsi)
  3. Bayburdi, A. (2013). Evaluation of the late flowering alnus varieties in salinity stress. Agronomic and Horticultural Production and Processing Journal, 3(3), 217-225. (in Farsi)
  4. Oraei, M., Tabatabaei, J., Fallahi, A. & Imani, A. (2009). The effects of salinity stress and rootstock on the growth, photosynthetic rate, nutrient and sodium concentrations of almond (Prunus dulcis Mill.). Journal of Horticultural Sciences, 2009(10), 131-140. (in Farsi)
  5. Momenpour, A., Bakhshi, D., Imani, A. & Rezaei, H. (2015). Effect of salinity stress on growth traits and nutrients concentration in Shahrood-12, Tono and 1-16 Alnus genotyopes grafted on GF677 rootstocks. Agricultural Agronomy, 17(1), 197-216. (in Farsi)
  6. Momeni, A. (2010). Geographical distribution and salinity levels of Iranian Soil resources. Soil Researchs (Special issue on salinity-A), 24(3), 203-215. (in Farsi)
  7. Zakeri Asl, M.A., Bolandnazar, S.A., Ustan, Sh. & Tabatabaei, S.J. (2014). Effect of NaCl and nitrogen levels on growth, vitamin C concentration and nitrat content in vegetables. Soil and Water Knowledge, 24(1), 239-250. (in Farsi)
  8. Arab, M.M., Yadollahi A., Shojaeiyan A. & Ahmadi, H. (2016). Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G × N15 rootstock. Frontiers in Plant Science, 7, 1-16.
  9. Bastam, N., Baninasab, B. & Ghobadi, C. (2013). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulator, 69, 275-284.
  10. Chartzoulakis, K., Loupassaki, M., Bertaki, M. & Androulakis, I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96, 235–247.
  11. Cha-um, S., Batin, C.B., Samphumphung, T. & Kidmanee, C. (2013). Physio-morphological changes of cowpea (Vigna unguiculata Walp.) and jack bean (Canavalia ensiformis L. DC.) in responses to soil salinity. Australian Journal Crop Science, 7(13), 2128-2135.
  12. Felipe, A.J. (2009). ‘Felinem’, ‘Garnem’, and ‘Monegro’ Almond×Peach Hybrid Rootstocks. Horticultural Science, 44, 196-197.
  13. Grattan, S.R. & Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127-157.
  14. Hasegawa, P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51, 463-499.
  15. Hu, Y. & Schmidhalter, U. (2005). Drought and salinity, a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541-549.
  16. Kamiab, F., Talaie, A., Javanshah, A., Khezri, M. & Khalighi, A. (2012). Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals of Biological Research. 3 (12), 5545-5551.
  17. Karimi, S. & Tavallai, V. (2017). Interactive effects of soil salinity and boron on growth, mineral composition and CO2 assimilation of pistachio seedlings. Acta Physiologiae Plantarum, 39(242), 1-10.
  18. Martinez-Rodriguez, M.M., Estan, M.T., Moyano, E., Garcia-Abellan, J.O., Flores, F.B., Campos, J.F., Al-Azzawi, M.J., Flowers, T.J. & Bolarin, M.C. (2008). The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environmental and Experimental Botany, 63, 392-401.
  19. Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D. & Boukhris, M. (2017). Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185, 1-12.
  20. Mestrea, L., Ángeles, M., Jesús, A.G., María, R., Jorge, P. & Ángeles Moreno, M. (2015). Influence of peach–almond hybrids and plum-based rootstocks on mineral nutrition and yield characteristics of ‘Big Top’ nectarine in replant and heavy-calcareous soil conditions. Scientia Horticulturae, 192, 475-481.
  21. Mohammadkhani, N., Heidari, R. & Abbaspour, N. (2015). Salinity effects on potassium accumulation and transporters expression in grape (Vitis vinifera L.). Iranian Journal of Plant Physiology, 5(4), 1483-1494. (in Farsi)
  22. Nabil, M. & Coudret, A. (1995). Effects of sodium chloride on growth, tissue elasticity and solute adjustment in two Acacia nilotica subspecies. Physiologia Plantarum, 93, 217-224.
  23. Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S. & Ali, K. (2010). Fatality of salt stress to plants, morphological, physiological and biochemical aspects. African Journal of Biotechnology, 9(34), 5475-5480.
  24. Noitsakis B., Dimassi, K. & Therios, I. (1997). Effect of NaCl induced salinity on growth, chemical composition and water relation of two almond (Prunus amygdalus L.) cultivars and the hybrid GF677 (Prunus amygdalus-Prunus persica). Acta Horticulturae, 449, 641-648.
  25. Parvaneh, T., Afshari, H. & Ebadi, A. (2011). A study of the influence of different rootstocks on the vegetative growth of almond cultivars. African Journal of Biotechnology, 10, 16808-16812.
  26. Taha, N.M. & Azza, I.M. (2011). Morphological and anatomical evaluation of a new five stone fruit rootstocks. Journal of American Science, 7, 135-152.
  27. Wani, I.A., Ahanger, R.A., Bhat, H.A., Lone, A.A., Bhat, T.A., Malik, I.A. & Hassan, G.I. (2012). Rootstocks of almond. Journal of Plant Development Sciences, 4, 137-150.
  28. Zrig, A., Ben Mohamed, H., Tounekti, T., Khemira, H., Serrano, M., Valeroc, D. & Vadel, A.M.  (2016). Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50-59.