مقایسه مشخصات فیزیکوشیمیایی عرق نعناع فلفلی (Mentha piperita L.) حاصل از گیاه خشک و تازه در دو مرحله رویشی و زایشی و در نسبت‌های مختلف حجم عرق به وزن گیاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 بخش تحقیقات گیاهان دارویی، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 بخش تحقیقات مرتع، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در این مطالعه، تاًثیر مرحله برداشت (رویشی و زایشی) و نسبت های مختلف حجم عرق به یک کیلوگرم گیاه تازه (1:2، 1:4، 1:6 و 1:8 لیتر)  بر خصوصیات فیزیکوشیمیایی و اسانس موجود در عرق نعناع فلفلی (Mentha piperita L.) بررسی شد. همچنین، از نعناع فلفلی خشک شده (سایه کامل، آفتاب+سایه، و آفتاب) نیز عرق تهیه شده و با خصوصیات فیزیکوشیمیایی گیاه تازه مقایسه شد. از روش­های استاندارد برای تعیین خصوصیات فیزیکوشیمیایی عرقیات و استخراج و اندازه‌گیری اسانس موجود در عرق استفاده شد و ترکیبات اسانس نیز توسط دستگاه‌های GC و GC/MS ارزیابی شدند. نتایج آنالیز واریانس نشان دادند که مرحله برداشت و نسبت عرق به گیاه بر عدد استری، عدد اکسایش، عدد یدی، و مقادیر اسانس عرق تاٴثیر معنی‌داری دارند. بیشترین مقدار عدد استری (02/0 ± 8/10) و عدد اکسایش (46/70 ± 33/165) در نمونه­های قبل از گل­دهی و برداشت با نسبت چهار به یک (به‌ترتیب نسبت حجمی آب به گیاه) مشاهده شد. مقدار اسانس در نمونه­های گل­دار (90/5 ± 83/37) بیشتر از نمونه­های قبل از گل­دهی (73/8 ± 25/28) بود و حجم­های برداشتی دو به یک (56/3 ± 50/35) و چهار به یک (53/5 ± 33/40) نیز مقادیر بالاتری اسانس داشتند. روش­های خشک کردن نیز بر خصوصیات فیزیکوشیمیایی عرق اثر داشت. منتول (9/33 – 6/40 درصد) و منتون (3/11 – 9/34 درصد) بیشترین مقدار ترکیبات موجود در عرق نعناع را در تمامی تیمارها به خود اختصاص دادند. طبق این نتایج، عرق نعناع فلفلی در مرحله گل­دهی کامل، در نسبت برداشت عرق به گیاه دو و چهار لیتر به یک کیلو گیاه، و خشک کردن در شرایط آفتاب+سایه از کیفیت بالاتری برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of physicochemical properties of peppermint (Mentha piperita L.) distillate obtained from dry and fresh plant in vegetative and flowering stages and in different distillate to water ratios

نویسندگان [English]

  • Reyhaneh Taebnia 1
  • Fatemeh Sefidkon 2
  • Ali Mohammadi Torkashvand 1
  • Ali Ashraf Jafari 3
  • Sepideh Kalate Jari 1
1 Department of Horticultural Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Medicinal Plants, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 4. Department of Rangelands, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

This study investigated the effects of harvesting time including vegetative and flowering stages and four different ratio of volumes of distillate to 1 kg of fresh plant (2, 4, 6, and 8 L per 1 kg fresh plant) on physiochemical characters and essential oils of the peppermint (Mentha piperita L.) distillate. In addition, comparisons were made between distillate resulted from dried (drying in shade, sunlight+shade, and sunlight) and fresh peppermint samples. Distillation was performed using the water distillation method. Standard protocols were used to investigate the physiochemical properties of distillate. Analyses of the essential oils were done using Gas Chromatography (GC) and GC-Mass Spectrometry (GC/MS). Two-way analyses of variances showed significant effects of the harvest time and distillate volume on ester number, oxidation number, iodine number, and essential oils quantity of the distillate. The highest amount of ester no. (10.8 ± 0.02) and oxidation no. (165.33 ± 70.46) was quantified in the vegetative stage and 1:4 L of distillate. Total amount of essential oils in the flowering (37.83% ± 5.9) were higher than the vegetative (28.25 ± 8.73) stages. In addition, distillates volumes of 2:1 (35.50 ± 3.56%) and 4:1 (40.33 ± 5.53%) had higher essential oils than the other distillate volumes. Drying methods had significant effects on all physicochemical properties of distillates. Menthol (33.9-40.6 %) and menthone (11.3-34.9 %) were the highest components of the oils within the distillates. The results indicated that the peppermint distillate may have higher quality when the plants harvested at flowering stage, dried at sunlight+shade, and distillate taken at 2 and/or 4 L to 1 kg plant.

کلیدواژه‌ها [English]

  • distillation
  • plant distillate
  • essential oils
  • standard quality

Extended Abstract

Introduction

Standardization of the protocols for distillation process plays an important role to improve the quality of plant distilled water. Peppermint (Mentha piperita L.), which is a hybrid between spearmint (M. spicata) and water mint (M. aquatica) belongs to the Lamiaceae family. It is a common herb with various domestic and industrial applications. In fact, peppermint is widely used in the food, pharmaceutical, perfumery and flavoring industries. The main constituent of the peppermint essential oil is menthol which is the major factor of its taste and smell. Peppermint oils have been dominantly applied in manufacture of toothpaste and flavored drinks. However, the quality and quantity of distillate and essential oils of mint can be variable, depend on the distillation process.

 

Materials and Methods

In the present study, two main experiments were carried out to standardize the physicochemical parameters of mint distillate with proper amount of qualified oils. In the first experiments, peppermint was harvested at two different stages of growth (vegetative and full flowering), and subjected to water distillation, mint distillate were obtained in four volumes (2, 4, 6 and 8, which were the ratio of the distillate volume to a certain amount of fresh plant, 1000 g) and examined for their physicochemical properties. On the second experiment, plants were harvested at two harvesting time (vegetative and flowering stage) and three drying methods, consisting of drying in shade sunlight+shade, and sunlight were applied to assess the distillate physicochemical indices and quantity and quality of the essential oils. The studied l parameters were acidity no., pH, relative density, ester no., oxidation no., and iodine no values. Also in the second experiment, Gas Chromatography (GC) and GC-Mass Spectrometry (GC/MS) analysis were used to identify and quantify the essential oils compositions. Two-way analyses of variance were applied to evaluate quality of peppermint distillate and Duncan’s multiple range tests were used to compare the characters means.

 

Results and Discussion

The results showed that harvesting time, distillate volume, and their interaction effect significantly affected the ester no., oxidation no., iodine no., and essential oil content of the peppermint distillates. Distillate derived from plants harvested at vegetative stage in a volume of 4 showed higher ester (10.8 ± 0.02) and oxidation (165.33 ± 70.46) numbers than the plants derived at flowering stage. However, total amount of essential oils was greater in the plants of flowering (37.83 ± 5.9 mg/100 ml) than the vegetative (28.25 ± 8.73 mg/100 ml) stages. Also, distillates in volumes 2:1 (35.50 ± 3.56 mg/100 ml) and 4:1 (40.33 ± 5.53 mg/100 ml) had higher essential oils than the other distillate volumes. The results also showed that in the both harvesting stages, drying in the shade is associated with a significant increase in essential oil and a decrease in ester and iodine number. Drying under sunlight led to higher pH, ester number and iodine number of the distillates. The highest values of oxidation no. and essential oil content were observed in distillates obtained from plants were harvested at flowering stage and shade-dried. Also, drying the samples under the sun and then in the shade caused an increase in the amount of essential oils compared to drying under the sunlight alone. GC/MS analyses showed different constituents in the essential oils of plants under treatments, major components were menthol (33.9-40.6 %) and menthone (11.3-34.9 %).

 

Conclusion

According to the present study harvesting peppermint at the flowering stage can result in greater essential oils content and higher amounts of menthol and menthone compared to the vegetative stage. Furthermore, the physicochemical indices and oil content of the two and four volumes of distillates were higher than those of the other examined volumes. We also found that harvesting at flowering stage and drying under sunlight+shade condition can lead to higher quality of distillate. Additional research is needed to investigate the effects of other distillation methods on the essential oils characteristics of peppermint.

Akhoondi, R., Mirjalili, M. H., & Hadian, J. (2015). Quantitative and qualitative variations in the essential oil of Rosa foetida Herrm. (Rosaceae) flowers as affected by different drying methods. Journal of Essential Oil Research, 27, 421-427.
Arab Ameri, S., Samadi, F., Dastar, B., & Zerehdaran, S. (2016). Effect of peppermint (Mentha piperita) powder on immune response of broiler chickens in heat stress. Iranian Journal of Applied Animal Science, 6, 435-445.
Arakawa, T., & Osawa, K. (2000). Pharmacological study and application to food of mint flavour-antibacterial and antiallergic principles. Aroma Research, 1, 20-23.
Babaeian, M., Naseri, M., Kamalinejad, M., Ghaffari, F., Emadi, F., Feizi, A., Rafiei, R., Mazaheri, M., Hasheminejad, S. A., & Park, J. W. (2017). The efficacy of mentha longifolia in the treatment of patients with postprandial distress syndrome: A double-blind, randomized clinical trial. Iranian Red Crescent Medical Journal, 19(2), e34538.
Barros, A. S, Morais, S. M., Ferreira, P. A. T., Vieira, Í. G. P., Craveiro, A. A., Fontenelle, R. O. S, Menezes, J. E. S. A., Silva, F. W. F., & Sousa, H. A. (2015). Chemical composition and functional properties of essential oils from Mentha species. Industrial Crops and Products, 76, 557-564.
Bartley, J. P., & Jacobs, A. L. (2000). Effects of drying on flavour compounds in Australian‐grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 80, 209-215.
Berktas, S. & Cam, M., 2021. Peppermint leaves hydrodistillation by-products: bioactive properties and incorporation into ice cream formulations. Journal of Food Science and Technology,. 58(11), 4282–4293.
Ćavar Zeljković, S., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., & Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10(3), 550.
Chen, J., & Wang, H. (2021). Density, viscosity, and saturated vapour pressure of 3-chloro-4-fluoronitrobenzene and 3-chloro-2-fluoronitrobenzene. The Journal of Chemical Thermodynamics, 154, 106337.
Choi, O., Cho, S. K., Kim, J., Park, C. G., & Kim, J. (2016). Antibacterial properties and major bioactive components of Mentha piperita essential oils against bacterial fruit blotch of watermelon. Archives of Phytopathology and Plant Protection, 49, 325-334.
Dmytryshyn, S., Dalai, A., Chaudhari, S., Mishra, H., & Reaney, M. (2004). Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties. Bioresource Technology, 92, 55-64.
Gavahian, M., Farahnaky, A., Farhoosh, R., Javidnia, K., & Shahidi, F. (2015). Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. Food and Bioproducts Processing, 94, 50-58.
Giatropoulos, A., Kimbaris, A., Michaelakis, Α., Papachristos, D. P., Polissiou, M. G., & Emmanouel, N. (2018). Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitology research, 117, 1953-1964.
Grigoleit, H. G., & Grigoleit, P. (2005). Peppermint oil in irritable bowel syndrome. Phytomedicine, 12(8), 601-606.
Heravi, M. J., & Sereshti, H. (2007). Determination of essential oil components of Artemisia haussknechtii Boiss. using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. Journal of Chromatography A, 1160, 81-89.
Kamatou, G. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 96, 15-25.
Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257-1260.
Kedia, A., Prakash, B., Mishra, P. K., Chanotiya, C., & Dubey, N. K. (2014). Antifungal, antiaflatoxigenic, and insecticidal efficacy of spearmint (Mentha spicata L.) essential oil. International Biodeterioration & Biodegradation, 89, 29-36.
Keifer, D., Ulbricht, C., Abrams, T. R., Basch, E., Giese, N., Giles, M., Kirkwood, C. D., Miranda, M., & Woods, J. (2008). Peppermint (Mentha Xpiperita): An evidence-based systematic review by the natural standard research collaboration. Journal of Herbal Pharmacotherapy, 7, 91-143.
Kumar, R., Sharma, S., Sharma, S., Sharma, M., & Kumar, N. (2018). Influence of flower to water ratio and distillation time of damask rose (Rosa damascena Mill.) flowers on essential oil content and composition in the western Himalayas. Journal of Essential Oil Research, 30, 353-359.
Liang, J., Zhang, Y., Chi, P., Liu, H., Jing, Z., Cao, H., Du, Y., Zhao, Y., Qin, X., & Zhang, W. (2023). Essential oils: Chemical constituents, potential neuropharmacological effects and aromatherapy-A review. Pharmacological Research-Modern Chinese Medicine, 6(2), 100210.
Loolaie, M., Moasefi, N., Rasouli, H., & Adibi, H. (2017). Peppermint and its functionality: A review. Archives of Clinical Microbiology, 8(4), 54.
Lucchesi, M. E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043(2), 323-327.
Marques, S. P. P. M., Pinheiro, R. O., Nascimento, R. A., Andrade, E. H. A., & Faria, L. J. G. (2023). Effects of harvest time and hydrodistillation time on yield, composition, and antioxidant activity of mint essential oil. Molecules 28(22), 7583.
McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytotherapy Research, 20(7), 519-530.
Mokhtarikhah, G., Ebadi, M. T., & Ayyari, M. (2020). Qualitative changes of spearmint essential oil as affected by drying methods. Industrial crops and products, 153, 112492.
Narasimhamoorthy, B., Zhao, L. Q., Liu, X., Yang, W., & Greaves, J. A. (2015). Differences in the chemotype of two native spearmint clonal lines selected for rosmarinic acid accumulation in comparison to commercially grown native spearmint. Industrial Crops and Products, 63, 87-91.
Öktemer, T., Ipçi, K., Muluk, N. B., & Cingi, C. (2015). A pastille combining myrrh tincture, peppermint oil and menthol to treat the upper airway. ENT Updates, 5, 128-131.
Park, K. J., Vohnikova, Z., & Brod, F. P. R. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering, 51, 193-199.
Peat, J., Frazee, C., Kearns, G., & Garg, U. (2016). Determination of menthol in plasma and urine by gas chromatography/mass spectrometry (GC/MS). In U. Garg (Ed.), Clinical applications of mass spectrometry in drug analysis: methods and protocols (pp. 205-211). Springer.
Rguez, S., Msaada, K., Daami-Remadi, M., Chayeb, I., Bettaieb Rebey, I., Hammami, M., Laarif, A., & Hamrouni-Sellami, I. (2019). Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosystems, 153(2), 264-272.
Riachi, L. G., & De Maria, C. A. B. (2015). Peppermint antioxidants revisited. Food chemistry, 176, 7281.
Rohloff, J., Dragland, S., Mordal, R., & Iversen, T. H. (2005). Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha piperita L.). Journal of Agricultural and Food Chemistry, 53, 4148-4143.
Sefidkon, F., Abbasi, K., & Khaniki, G. B. (2006). Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chemistry, 99(1), 19-23.
Sellami, I. H., Wannes, W. A., Bettaieb, I., Berrima, S., Chahed, T., Marzouk, B., & Limam, F. (2011). Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chemistry, 126, 691-697.
Szterk, A., Roszko, M., Sosińska, E., Derewiaka, D., & Lewicki, P. (2010). Chemical composition and oxidative stability of selected plant oils. Journal of the American Oil Chemists' Society, 87, 637-645.
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
Zhang, L. L., Chen, Y., Li, Z. J., Li, X., & Fan, G. (2022). Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food & Function, 13, 3110-3132.
Zhao, Q., Li, M., Li, M., Jin, L., & Wei, J. (2023). Changes in growth characteristics and secondary metabolites in Sinopodophyllum hexandrum with increasing age. Industrial Crops and Products, 196, 116509.
Zheljazkov, V. D., & Astatkie, T. (2012). Distillation waste water can modify peppermint (Mentha ×piperita L.) oil composition. Industrial Crops and Products, 36(1), 420-426.