بررسی کالوسزایی و جنینزایی سوماتیکی گیاه دارویی آببشقابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران

3 گروه علوم باغبانی ، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران.

چکیده

گیاه آب­بشقابی (Centella asiatica L.) یکی از گیاهان دارویی با ارزش است که تنوع زیستی آن به دلیل محدودیت منطقه­های پراکنش و کاهش آب­های سطحی با خطر نابودی در دنیا رو به رو می­باشد. به­منظور بررسی جنین­زایی سوماتیکی آب­بشقابی، آزمایشی در سال 1398 در آزمایشگاه کشت بافت دانشکده کشاورزی دانشگاه گیلان اجرا شد. از برگ­ این گیاه به‌عنوان ریزنمونه، در محیط کشت جامد MS به همراه 2و 4 دیکلرو فنوکسی استیک اسید (2,4-D) در غلظت­های 2، 5/1، 1، 5/0، 25/0 و صفر میلی­گرم در لیتر در ترکیب با تنظیم­کننده رشد گیاهی بنزیل آمینو پورین (BAP) در غلظت­های 1، 5/0، 25/0 و صفر میلی­گرم در لیتر برای­ القای کالوس­های جنین­زا استفاده شد. سپس برای القای جنین­های سوماتیکی از کالوس­های تشکیل‌شده، از تیمار 2,4-D با غلظت­های 3/0، 2/0، 1/0 و صفر میلی­گرم در لیتر و برای جوانه­زنی جنین­های تشکیل‌شده از تنظیم کننده رشد BAP در غلظت­های 1، 5/0، 25/0 و صفر میلی­گرم در لیتر استفاده شد. نتایج نشان داد که تیمار دو میلی­گرم در لیتر 2,4-D دارای بیشترین درصد کالوس­زایی (61/96 درصد)، وزن تر (96/3 گرم از یک سانتی­متر مربع برگ) و میانگین قطر کالوس (56/3 سانتی­متر) در شرایط تاریکی بود. همچنین تیمار 1/0 میلی­گرم در لیتر 2,4-D دارای بیشترین میانگین تعداد جنین­های تشکیل‌شده در مراحل مختلف کروی، قلبی و اژدری شکل بود و تیمار 1/0 میلی­گرم در لیتر 2,4-D دارای بیشترین درصد­ جنین­زایی (27/55 درصد) بود که با تیمار 2/0 میلی­گرم در لیتر 2,4-D اختلاف معنی­داری نداشت. نتایج نشان داد که تیمار یک میلی­گرم بر لیتر BAP دارای بیشترین درصد (8/56 درصد) جوانه­زنی جنین­ها و همچنین بیشترین میانگین تعداد (4/12) گیاهچه تولیدشده بود. بطور کلی استفاده از 2,4-D برای ایجاد کالوس­های جنین­زا و BAP برای جوانه­زنی جنین­های تشکیل شده رضایت بخش بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

In Vitro Callus Induction, Somatic Embryogenesis and Indirect Regeneration in Gotu Kola (Centella asiatica) as a Medicinal Plant

نویسندگان [English]

  • mohammadvali Habibi 1
  • Yousef Hamidoghli 2
  • Amir Sahraroo 3
1 Department of Horticultural Sciences, Faculty of Agriculture, Tabriz University, Tabriz, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture, Guilan University, Guilan, Iran
3 Department of Horticultural Sciences, Faculty of Agriculture, Guilan University, Guilan, Iran.
چکیده [English]

Gotu kola (Centella asiatica L.)  is one of the valuable medicinal plants, whose biodiversity is facing the risk of extinction in the world due to the limitation of distribution areas and the reduction of surface waters. In order to investigate somatic embryogenesis in gotu kola, an experiment was carried out in 2018 in the tissue culture laboratory of the Faculty of Agriculture of Gilan University. Leaves were used as explants and MS medium as basal medium. The effect of different concentrations of plant growth regulators (2,4- dichlorophenoxyacetic acid (2,4-D) in five concentrations of 0, 0.25, 0.5, 1, 1.5 and 2 mg/L in combination with benzyl adenine (BAP) in four concentrations of 0, 0.25, 0.5 and 1 mg/L) were tested to determine the appropriate culture medium for inducing gotu kola embryogenic callus. For the induction of somatic embryos the good status obtained calli were transferred to different concentration of 2,4-D including 0, 0.1, 0.2 and 0.3 mg/L. In the next step the derived somatic embryos were subjected to  0, 0.25, 0.5 and 1 mg/L of BAP for germination. The results showed that the treatment with 2 mg/L of 2,4-D had the highest percentage of callus formation (96.61%), fresh weight (3.96 g/cm2 of leaf) and average callus diameter (3.56 cm) in dark conditions. Also, the treatment of 0.1 mg/L of 2,4-D had the highest average number of embryos formed in different stages of spherical, heart, and torpedo shaped, and the treatment of 0.1 mg/L of 2,4-D had the highest percentage of embryogenesis (55.27%), which was not significantly different from the treatment of 0.2 mg/L of 2,4-D. The results showed that the treatment of 1 mg/liter of BAP had the highest percentage (56.8%) of embryo germination and also the highest average number (12.4) of produced seedlings. In general, the use of 2,4-D to create embryogenic calli and BAP to germinate the formed embryos was satisfactory.         

کلیدواژه‌ها [English]

  • Tissue culture
  • Callus induction
  • Embryogenesis
  • Growth regulator

Extended Abstract

Introduction

Gotu kola (Centella asiatica L.) is one of the important medicinal plants that are used in traditional medicine for the treatment of diseases and in the cosmetics industry. In Iran it grows in wetlands of Anzali city. Due to the excessive exploitation of natural resources, as well as the reduction of surface water and the increase of agricultural toxins, the biodiversity of Gotu kola is at risk in the whole world. This is why its name has been registered as a threatened plant species by the International Union for Conservation of Nature and National Resources (IUCN). Considering the low seed germination of this plant, it seems necessary to use in-vitro micropropagation methods for producing a large number of plants in the shortest time.

 

 

 

Materials and methods

     In this research, in order to control fungal and bacterial contamination and reduce the use of disinfectants, first the disinfected runner tips were cultivated in MS culture medium, and when transformed into whole plants, their leaves were used as explants for embryogenesis. Leaf explants were used to induce embryonic calli on MS solid media containing 0, 0.25, 0.5, 1.5 and 2 mg/l 2,4-D alone or in combination with 0,0.25,0.5 and 1 mg/l BAP. The obtained calli were transferred to MS medium containing different concentrations of 2,4-D, including 0, 0.1, 0.2 and 0.3 mg/l for induction of somatic embryos. BAP growth regulator was used at concentrations of 0, 0.25, 0.5 and 1 mg/l to germinate the formed embryos.

 

Results and Discussion

    The results of inducing embryonic calli  by plant growth regulators showed that the concentration of 2 mg/l 2,4-D treatment had the highest percentage of callus formation (96.61%), callus fresh weight (3.96g) and callus mean diameter (3.56cm) in dark conditions. The effect of 2,4-D treatment on somatic embryos formation showed that concentration of 0.1 mg/L 2,4-D had the highest mean number of embryos formed at different stages of spherical-, heart- and torpedo-shaped. Also, the 0.1 mg/l 2,4-D treatment had the highest percentage of embryogenesis (55.27%) which was not significantly different from 0.2 mg/l 2,4-D treatment. BAP growth regulator was used at concentrations of 0, 0.25, 0.5 and 1 mg/l to germinate the formed embryos. The results showed that maximum percentage of embryos germination (56.8%) and maximum mean number of seedling production (12.4%) were obtained at the concentration of 1 mg/l BAP. It has been reported that culture medium containing 2,4-D is one of the most suitable mediums for inducing embryogenic callus in many plant species because this medium increases internal auxin in plants.

    In the examined treatments where the concentration of BAP was higher than 2,4-D, the fresh weight of the callus also increased with the increase in the amount of BAP. Adding cytokinin to the auxin-rich medium in the present study increased callus formation and also the average of callus diameter. By increasing the concentration of 2,4-D from zero to 2 mg/liter, the percentage of callus formation increased. The concentration of 0.1 mg/liter of 2,4-D had the highest percentage of embryogenesis. The results of other studies also showed that by reducing the amount of growth regulators, the stages of fetal development are improved. Although the process of embryo induction from cells in the callus is not completely understood, today it is generally believed that the continued presence of auxin causes a change in gene expression and is probably associated with an increase in DNA demethylation of the embryo masses. Under these conditions, the embryonic masses inside the calli synthesize the genes necessary to complete the globular stage of embryogenesis. Somatic embryos of many species are capable of germination in the induction medium. In a few cases, it is necessary to transfer the embryos to a fresh culture medium with different concentrations of growth-regulating compounds in which auxin has been removed. The use of 2,4-D growth regulator as auxin in the creation of embryogenic calli had good results. Induction of somatic embryos with lower concentrations of 2,4-D was more effective. For the germination of embryos, the use of BAP growth regulator was successful. In this research, the embryos formed roots after germination, and it took a long time for the roots to grow, which probably would have shortened the rooting time if growth regulators such as IBA and NAA were used after germination. Acclimatization of the seedlings in laboratory conditions resulted in a good process, but in strong light conditions, the plants suffered from sunburn, which, due to the nature of the Gotu kola plant, which is a shade-loving plant, the use of a cover as a shade solved the problem of sunburn.

 

Conclusion

Considering that Gotu kola is a creeping plant, it is difficult to control its various surface and internal contaminations in the conditions of in vitro cultivation. Using the tip of the creeping stem as the initial explant to obtain plants free from pollution and disease was extremely satisfactory and made the next steps of the work, i.e., the use of the free of contamination leaf as explant  for callus generation, very easy. The use of 2,4-D regulator as auxin in creating embryogenic callus had good results. Induction of somatic embryos with lower concentrations of 2,4-D was more efficient, especially in the spherical and heart-shaped stages, but in these treatments, the torpedo-shaped stage was not formed, which by transfer to MS culture medium without growth regulator and also light conditions, torpedo-shaped stage was also observed. For the germination of embryos, the use of BAP growth regulator was successful.

 

تقی زاده، میترا؛ یاسا، نرگس؛ نقی نژاد، علیرضا و اهوازی، مریم. (1383). بررسی گیاه دارویی آب‌ بشقابی (.Centella asiatica (L.) Urban). فصلنامه گیاهان دارویی، 3(12)، 8-1.
Arora, D. K., Sun, S. S., Ramawat, K. G., & Merillon, J. M. (1999). Factors affecting somatic embryogenesis in long term callus cultures of 'safed musli' (Chlorophytum borivilianum), an endangered wonder herb.‏ Indian Journal of Experimental Biology, 37(1), 75-82.
Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80(5), 176-183.‏
Bibi, Y., Zia, M., Nisa, S., Habib, D., Waheed, A., & Chaudhary, F. M. (2011). Regeneration of Centella asiatica plants from non-embryogenic cell lines and evaluation of antibacterial and antifungal properties of regenerated calli and plants. Journal of Biological Engineering, 5(1), 1-8.‏
Biradar, S. 2017. Regeneration of medicinally important plant Centella asiatica L. by somatic embryogenesis. Journal of Medicinal Plants, 7 (3), 5-6 (Suppl) DOI: 10.4172/2167-0412-C1-012.
Biswas, D., Mandal, S., Chatterjee Saha, S., Tudu, C. K., Nandy, S., Batiha, G. E. S., & Dey, A. (2021). Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytotherapy Research, 35(12), 6624-6654.‏
Campanoni, P., & Nick, P. (2005). Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology, 137(3), 939-948.‏
Devkota, A., Dall'Acqua, S., Comai, S., Innocenti, G., & Jha, P. K. (2010). Centella asiatica (L.) urban from Nepal: Quali-quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochemical Systematics and Ecology, 38(1), 12-22.‏
Epstein, E., Kochba, J., & Neumann, H. (1977). Metabolism of indoleacetic acid by embryogenic and non-embryogenic callus lines of «Shamouti» orange (Citrus sinensis OsB.). Zeitschrift für Pflanzenphysiologie, 85(3), 263-268.‏
Fetrow, C. W., & Avila, J. R. (2001). Professional’s Hand Book of Complementary & Alternative Medicines. Springhouse Corporation.
George, E. F., & Sherrington, P. D. (1984). Plant propagation by tissue culture: Handbook and directory of commercial laboratories. Exegetics Ltd., Eversley.
Ghiulai, Roxana, Oana Janina Roşca, Diana Simona Antal, Marius Mioc, Alexandra Mioc, Roxana Racoviceanu, Ioana Macaşoi et al. "Tetracyclic and pentacyclic triterpenes with high therapeutic efficiency in wound healing approaches." Molecules 25, no. 23 (2020): 5557.Hanumantharaya, B. G. (2009). Studies on in vitro regeneration and mutagenesis in Centella asiatica (L.) urban. [Doctoral dissertation, Bangalore University].
Grossmann, Klaus, and Hauke Hansen. (2001).  Ethylene‐triggered abscisic acid: a principle in plant growth regulation?. Physiologia plantarum, 113(1), 9-14.
Hesami, M., Naderi, R., Yoosefzadeh-Najafabadi, M., & Maleki, M. (2018). In vitro culture as a powerful method for conserving Iranian ornamental geophytes. Journal of Biotechnology Computational Biology and Bionanotechnology, 99(1),104-120.
Jalili, A., & Jamzad, Z. (1999). Red data book of Iran; a preliminary survey of endemic, rare & endangered plant species in Iran; Research Institute of Forest & Rangelands Publication, Tehran, 750pp. (In Persian).
Joshee, N., Biswas, B. K., & Yadav, A. K. (2007). Somatic embryogenesis and plant development in Centella asiatica L., a highly prized medicinal plant of the tropics. HortScience, 42(3), 633-637.‏
Khan, M. A., Khan, H. M., Ganie, I. B., Kumar, S., Shahzad, A., Celik, I., & Shahid, M. (2022). Anti-quorum sensing, antibiofilm, and antibacterial activities of extracts of Centella asiatica L. leaves, and in vitro derived leaves-calli through tissue culture: a potential for biofouling-prevention. Biofouling, 38(7), 715-728.‏
Long, H. S., Stander, M. A., & Van Wyk, B. E. (2012). Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. South African Journal of Botany, 82, 53-59.‏
LoSchiavo F, Pitto L, Giuliano G, Tort G, Nuti-Ronchi V, Marazziti D, ... Terzi M. (1989). DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theoretical and Applied Genetics, 77(12), 325-331.‏
Martin K. P. (2004). Plant regeneration through somatic embryogenesis In medicinally important Centella asiatica L. In Vitro Cellular & Developmental Biology - Plant 40(4), 586–591.
Mercy, S., Sangeetha, N., & Ganesh, D. (2012). In vitro production of adventitious roots containing asiaticoside from leaf tissues of Centella asiatica L. In Vitro Cellular & Developmental Biology - Plant, 48, 200-207.‏
Michalczuk, L., Ribnicky, D. M., Cooke, T. J., & Cohen, J. D. (1992). Regulation of indole-3-acetic Acid biosynthetic pathways in carrot cell cultures. Plant Physiology, 100(3), 1346-1353.‏
Pandey, N. K., Tewari, K. C., Tewari, R. N., Joshi, G. C., Pande, V. N., & Pandey, G. (1993). Medicinal plants of Kumaon Himalaya and strategies for conservation. In U. Dehr (Ed.), Himalayan Biodiversity: Conservation Strategies (pp. 293-302). Himavikas Publication, Gyanodaya Prakashan.
Paramageetham, C. H., Prasad babu, G., & Rao, J. V. S. (2004). Somatic embryogenesis in Centella asiatica L. an important medicinal and neutraceutical plant of India. Plant Cell, Tissue and Organ Culture, 79(5), 19-24.‏
Patra, A., Rai, B., Rout, G. R., & Das, P. (1999). Successful plant regeneration from callus cultures of Centella asiatica (Linn.) Urban. Plant Growth Regulation, 24, 13-16.
Perera, P. K., Meedeniya, A. C. B., & Chamikara, N. H. A. (2021). Traditional Medicinal Plants of Sri Lanka and Their Derivatives of Benefit to the Nervous System. In D. C. Agrawal & M. Dehanasekaran (Eds.), Medicinal Herbs and Fungi. Springer, Singapore.
Rayle, D. L., & Cleland, R. E. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiology, 99(4), 1271-1274.‏
Sehgal, C. B., & Abbas, N. S. (1994). Somatic embryogenesis and plant regeneration from hypocotyl tissue of Trachyspermum ammi (L.) Sprague. Phytomorphology, 44(5), 265-271.‏
Sharma, A., Shanker, C., Tyagi, L. K., Singh, M., & Rao, C. V. (2008). Herbal medicine for market potential in India: an overview. Academic Journal of Plant Sciences, 1(2), 26-36.‏
Sharp, R. E., LeNoble, M. E., Else, M. A., Thorne, E. T., & Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. Journal of Experimental Botany, 51(350), 1575-1584.‏
Sun, B., Wu, L., Wu, Y., Zhang, C., Qin, L., Hayashi, M., ... & Liu, T. (2020). Therapeutic potential of Centella asiatica and its triterpenes: A review. Frontiers in Pharmacology, 11(8), 568032.‏
Taghizadeh, M., Ahvazi, M., & Naghinegade, A. (2010). Determination of growth and distribution of Centella asiatica in the Anzali lagoon. Iranian Journal of Pharmaceutical Research, (Supplement 2), 66-66. (In Persian).
Taiz, L., & Zeiger, E. (2010). Plant physiology fifth edition. Sunderland, Massachusetts, USA: Sinauer Assosiates inc., puplishers. The second volume. 321 p.
Verpoorte, R., Van Der Heijden, R., Hoge, J. H. C., & Ten Hoopen, H. J. G. (1994). Plant cell biotechnology for the production of secondary metabolites. Pure and Applied Chemistry, 66(10-11), 2307-2310.‏
Yong-Wook, K. (2000). Somatic embryogenesis in Quercus acutissima. In S. M. Jain, P. K. Gupta & R. J. Newton (Eds.), Somatic Embryogenesis in Woody Plants, 6(pp. 671-685). Springer-Science + Business Media