تاثیر سربرداری و تیدیازورون بر خصوصیات مورفوفیزیولوژیک و بیوشیمیایی شمعدانی معطر تحت تنش کم آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، چهارمحال بختیاری، شهرکرد، ایران

چکیده

به‌منظور بررسی اثر سربرداری و محلول‌پاشی تیدیازورون روی بهبود تحمل به تنش کم آبیاری در گیاهان شمعدانی معطر، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با چهار تکرار در گلخانه‌های پژوهشی دانشکده کشاورزی دانشگاه لرستان در سال 1401 انجام شد. فاکتور اول تنش کم آبیاری (80 (شاهد)، 50 و 20 درصد آب قابل دسترس در خاک)، فاکتور دوم سربرداری و عدم سربرداری و فاکتور سوم شامل محلول‌پاشی تیدیازورون (صفر، 5 و 10 میلی‌گرم در لیتر) بود. نتایج نشان داد که تنش کم آبیاری تاثیر کاهشی بر مولفه‌های ارتفاع بوته، تعداد ساقه جانبی، وزن تر و خشک کل، محتوای نسبی آب و درصد اسانس داشت، اما نشت الکترولیت، محتوای مالون دی‌آلدئید و فعالیت آنزیم کاتالاز را افزایش داد. سربرداری گیاهان و محلول‌پاشی تیدیازورون در سطح شاهد، باعث کاهش ارتفاع، تعداد برگ و محتوای نسبی آب برگ شدند، اما وزن تر و خشک کل، رشد ریشه، غلظت رنگیزه‌های فتوسنتزی و نشت الکترولیت را افزایش دادند. با این‌وجود، تحت شرایط تنش کم آبیاری، ارتفاع بوته، تعداد شاخه جانبی، تعداد برگ، رشد ریشه، وزن تر و خشک کل، غلظت رنگدانه‌های فتوسنتزی، محتوای نسبی آب برگ و عملکرد اسانس را افزایش و میزان نشت الکترولیت، محتوای مالون دی‌آلدئید و فعالیت آنزیم کاتالاز را کاهش دادند. به‌طور‌کلی،نتایج نشان داد کاربرد سربرداری و تیدیازورون به‌ویژه در غلظت 5 میلی‌گرم در لیتر از طریق بهبود تعادل آبی و افزایش رشد ریشه، باعث کاهش اثرات نامطلوب کم آبیاری شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Pinching and Thidiazuron on Morphophysiological and Biochemical Properties of Pelargonium graveolens Under Water Deficit Stress

نویسندگان [English]

  • Abdolhossein Rezaei Nejad 1
  • abass yasemi 1
  • Sadegh Mousavi Fard 2
  • Farhad Beiranvand 1
1 Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture, Shahrekord University, Chaharmahal Bakhtiari, Shahrekord, Iran
چکیده [English]

In order to investigate the effect of pinching and foliar spraying of thidiazuron on improving the tolerance to water-deficit stress in Pelargonium graveolens plants, a factorial experiment was conducted in the form of a completely randomized design with four replications in the research greenhouses of the Faculty of Agriculture of Lorestan University in 2022. The first factor was water deficit stress (80 (control), 50 and 20% available water in the soil (AWC)), the second factor was pinching and non-pinching, and the third one included thidiazoron foliar spraying (zero, 5 and 10 mg/liter). The results showed that water deficit stress had a decrease effect on the indices of plant height, number of lateral branches, total fresh and dry weight, relative water content and essential oil percentage, whereas it had an increase impact on electrolyte leakage, malondialdehyde content and catalase enzyme activity. Pinching of plants and foliar application of thidiazuron in the control level decreased the plant height, number of leaves and the relative water content of the leaves, but increased total fresh and dry weight, root growth, concentration of photosynthetic pigments and electrolyte leakage. However, under the water deficit stress, plant height, number of lateral branches, number of leaves, root growth, total fresh and dry weight, relative leaf water content and essential oil yield increased and electrolyte leakage, malondialdehyde content and catalase enzyme activity decreased. In general, the results showed that the application of pinching and thidiazoron, particularly at a concentration of 5 mg/liter, resulted in a reduction of the adverse effects of water deficit stress by improving the water balance and promoting root growth.

کلیدواژه‌ها [English]

  • Drought
  • Number of branches
  • Photosynthetic pigments
  • Plant height
  • Relative water content

Extended Abstract

Introduction

The growth and development of plants in arid and semi-arid areas is limited by lack of water, resulting in changes in their physiological and biochemical characteristics, such as an imbalance in hormonal levels that can cause a decrease in plant growth. Therefore, the utilization of plant growth regulators can be an effective factor in improving tolerance to abiotic stresses. On the other hand, in plants with a strong dominance of terminal bud, application of plant growth regulators causes the promotion of branching and enhancement of plant yield. Thidiazuron affects many aspects of the plant, including shoot formation and multiplication.  It is also resistant to internal cytokinin oxidases, which makes it stable in the plant. Aromatic geranium is a slow-growing, perennial plant that is used as an ornamental and medicinal plant. The present study aims to investigate the effect of thidiazuron foliar application and pinching in reducing the adverse effects of water deficit stress on some morphophysiological and biochemical characteristics of aromatic geranium in greenhouse conditions.

 

Materials and methods

The factorial experiment was conducted in the form of a completely randomized design with three factors and four replications in the research greenhouses of Lorestan Agricultural College in spring and summer of 2022. The first factor was water deficit stress at three levels of 80, 50 and 20% of available water content in the soil, the second factor was pinching at two levels including without pinching and with pinching and the third factor was thidiazuron foliar spraying at three levels of zero (control), 5 and 10 mg/l. Stem cuttings of aromatic geranium were induced to rooting by application of an auxin rooting hormone. Then transplanted to the substrate containing sand, field soil and manure 1:1:1. After the establishment of cuttings, the water deficit stress was calculated with the help of pressure plate device and gravimetrically method. Pinching was performed by hand in the morning. Thidiazuron treatment was also carried out by spraying on plants. Three months after the application of water deficit stress, the morphophysiological and biochemical characteristics in addition to percentage and yield of the essential oil were measured.

 

Results and discussion

The results showed that the stress of water deficit decreased the height of the plant, the number of lateral stems, the total fresh and dry weight, the relative water content of leaf and the percentage of essential oil, but it increased electrolyte leakage, malondialdehyde content and catalase enzyme activity. Pinching and foliar spraying of thidiazoron on plants at the level of 80% of available water led to a decrease in height, number of leaves and relative water content of leaves. Although the total fresh and dry weight, root growth, concentration of photosynthetic pigments and electrolyte leakage increased under the condition of water deficit stress, but plant height, number of lateral branches, number of leaves, root growth, total fresh and dry weight, concentration of photosynthetic pigments, relative content of leaf water and essential oil yield increased and electrolyte leakage rate, malondialdehyde content and catalase enzyme activity decreased. Among the examined concentrations of thidiazuron, the concentration of 5 mg/liter showed a better effect on the growth and development of plants. Drought-resistant plants can show resistance to water deficit conditions through morphological and physiological adaptations and molecular signals. In fact, the decrease in plant height can be due to the decrease in turgor pressure and as a result, the decrease in cell division and enlargement in drought stress conditions. The effect of thidiazoron and the action of pinching can increase cell division, chlorophyll accumulation, biosynthesis of photosynthetic pigments (conversion of etioplast to chloroplast) and delay the aging of plant leaves by reducing terminal dominance and stimulating cytokinin production. Also, through the positive effect on cell division, it increases the potential of the physiological reservoir and thereby increases the photosynthetic capacity and plant growth. By increasing the irrigation intervales, the essential oil content enhanced, while the yield of oil declined, which can be related to the reduction of vegetative growth as a result of water deficit stress Thidiazuron as a growth stimulant can affect secondary metabolites depending on the time and the concentration used.

 

Conclusion

The results of the present experiment showed that pinching and the foliar application of thidiazuron can increase the resistance of the Pelargonium graveolens water deficit stress by improving root growth and inhibiting terminal dominance. However, more research is needed in order to use thidiazuron for decapitation in other plants. 

بیرانوند، فرهاد.، زاهدی، بهمن.، و رضایی نژاد، عبدالحسین. (1401). بررسی تاثیر محلول‌پاشی سلنیوم روی ویژگی‌های مورفوفیزیولوژیکی و بیوشیمیایی مریم گلی زینتی تحت شرایط تنش کم آبیاری، مجله فرآیند و کارکرد گیاهی، 11 (47)، 339-323.
حسنی، عباس. (1385). بررسی تاثیر تنش کم آبی بر رشد، عملکرد و میزان اسانس گیاه دارویی بادرشبو (Dracocephalum moldavica). تحقیقات گیاهان دارویی و معطر ایران، 22 (3)، 256-261.
رضایی نژاد، عبدالحسین.، فیضیان، محمد.، سپهوند، کبری. (1392). تأثیر تنش کم‌آبی بر رشد، عملکرد، میزان و ترکیب‌های اسانس شمعدانی معطر (Pelargonium graveolens L.). ، دو فصلنامه فنآوری تولیدات گیاهی، 5 (1)، 94-83.
محمودی سورستانی، محمد.، و امیدبیگی، رضا. (1391). مقایسه عملکرد بدن رویشی، مقدار و ترکیب اسانس گل مکزیکی (Agastache foeniculum Kuntze) در شرایط مزرعه و گلخانه تحت تیمار تنش خشکی. تولیدات گیاهی، 36 (4)، 53-43.
REFERENCES
Ali, H., Khan, M. A., Kayani, W. K., Khan, T., & Khan, R. S. (2018). Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosaIndustrial Crops and Products, 121, 418-427.
Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239-246.
Alvareza, S., Gómez-Bellota, M. J., Acosta-Motosc, J, R., & Sánchez-Blanco M. J. (2019). Application of deficit irrigation in Phillyrea angustifolia for landscaping purposes, Agricultural water Water managementManagement, 218, 193–202.
Amani Machiani, M., Javanmard, A., Morshedloo, M. R., & Maggi, F. (2018). Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean, Industrial. Crops and Products, 111, 743–754.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual. Review. Plant Biology., 55, 373-399.
Beiranvand, F., Zahedi, B., & Rezaei Nejad, A. (2023). Investigation of the effect of selenium foliar application on morphophysiological and biochemical characteristics of ornamental salvia under irrigation regime. Plant Process and Function, 11 (47),  :323-339. (In Persian)
Blackman, P. G., & Davies, W. J. (1984). Age-related changes in stomatal response to cytokinins and abscisic acid. Annals of Botany, 54(1), 121-126.
Calvo-Polanco, M., Armada, E., Zamarreño, A. M., García-Mina, J. M., & Aroca, R. (2019). Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolorJournal of Experimental Botany, 70(21), 6437-6446.
Catalano, A., Ceramella, J., Iacopetta, D., Mariconda, A., Scali, E., Bonomo, M. G., & Sinicropi, M. S. (2022). Thidiazuron: New trends and future perspectives to fight Xylella fastidiosa in olive trees. Antibiotics, 11(7), 947.
Çelikel, F. G., Zhang, Q., Zhang, Y., Reid, M. S., & Jiang, C. Z. (2021). A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Frontiers in Plant Science, 12, 639717.
Chamani, E., & Esmaeilpour, B. (2007). Thidiazuron effects on physiochemical characteristics of carnation during pre and postharvest periods. Journal of. Applied. Horticulture, 9, 115-117.
Chance, B., & Maehly, A. C. (1955). Assay of catalas and proxidase. In S. P.: Colowick, S.P., & N. D. Kaplan (eds). Methods in Enzymology. Academic Press, New York, 764-775.
Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259-1270.
Dewir, Y. H., Nurmansyah, Naidoo, Y., & Teixeira da Silva, J. A. (2018). Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Reports, 37, 1451-1470.
Dorajeerao, A. V. D., & Mokashi, A. N. (2012). Growth analysis as influenced by pinching time in garland chrysanthemum (Chrysanthemum coronarium L.). J Agric Res Technol Global Journal of Bioscience and Biotechnology, 371(32), 373242-379247.
Eiasu, B. K., Steyn, J. M., & Soundy, P. (2012). Physiomorphological response of rose-scented geranium (Pelargonium spp.) to irrigation frequency. South African Journal of Botany, 78, 96-103.
El Lateef Gharib, F. A., Zeid, I. M., Ghazi, S. M., & Ahmed, E. Z. (2019). The response of cowpea (Vigna unguiculata L) plants to foliar application of sodium selenate and selenium nanoparticles (SeNPs). Journal of Nanomaterials & Molecular Nanotechnology, 8(4), 1-15.
El-Ramady, H., Abdalla, N., Taha, H. S., Alshaal, T., El-Henawy, A., Faizy, S. E. D. A., … & Schnug, E. (2016). Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14(1), 123-147.
Ferrante, A., Tognoni, F., Mensuali-Sodi, A., & Serra, G. (2003). Treatment with thidiazuron for preventing leaf yellowing in cut tulips and chrysanthemum. Acta Horticulturae, 624, 357-363.
Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29 (5), 897-912.
Gudarowska, E., & Szewczuk, A. (2002). Wplyw czynnikow agtotechnicznych i bioregulatorow na stopien rozgalezienia jednorocznych i dwuletnich drzewek jabloni odmian GALA i ALWA na podkladce M. 26. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa w Skierniewicach, 10, 29-37.
Hassani, A. (2006). Effect of water deficit stress on growth, yield and essential oil Content of
Dracocephalum moldavica. Iranian Journal of Medicinal and Aromatic Plants, 22 (3), 256-261. (In Persian)
Huetteman, C. A., & Preece, J. E. (1993). Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue and Organ Culture, 33, 105-119.
Hussain, F., Hadi, F., & Akbar, F. (2019). Magnesium oxide nanoparticles and thidiazuron enhance lead phytoaccumulation and antioxidative response in Raphanus sativus L. Environmental Science and Pollution Research, 26, 30333-30347.
Hutchinson, M. J., Onamu, R., Kipkosgei, L., & Obukosia, S. D. (2014). Effect of Thidiazuron, NAA and BAP on in vitro propagation of Alstroemeria aurantiaca C. V. ‘Rosita’from shoot tip explants. Journal of Agriculture, Science and Technology, 16(2), 58-72.
Jaleel C. A., Gopi R., Manivannan P., Gomathinayagam M., Murali P.V., & Panneerselvam R. (2008). Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pesticide Biochemistry and Physiology, 90(2): 135-139.
Karnwal, A., Shrivastava, S., Al-Tawaha, A. R. M. S., Kumar, G., Kumar, A., & Kumar, A. (2023). PGPR- mediated breakthroughs in plant stress tolerance for sustainable farming. Journal of Plant Growth Regulation, 1-17. https://doi.org/10.1007/s00344-023-11013-z.
Kaur, S., Gupta, A. K., & Kaur, N. (2000). Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regulation, 30(1), 61-70.
Khan, A., & Singh, A. V. (2021). Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World Journal of Microbiology and Biotechnology, 37, 1-17.
Khandal, H., Gupta, S. K., Dwivedi, V., Mandal, D., Sharma, N. K., Vishwakarma, N. K., & Chattopadhyay, D. (2020). Root‐specific expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. Plant Biotechnology Journal, 18(11), 2225-2240.
Ki-Yun, J., Bong-Hwa, K., Yu-Jin, P., & Jung-Myung, L. (2004). Producing double-stemmed tomato seedling by cutting propagation, pinching and plant bioregulators application. HortScience, 39(4), 758C-758.
Kumar, V., Singh, V., Kumar, L., & Maurya, S. K. (2019). A Review on effect of pinching on growth, flowering and flower yield of marigold. International Journal of Pure and Applied Bioscience,  7, 493-501.
Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: –pigments of photosynthetic biomembrances. In H. Sies, R. Douce, N. Clowick & N. Kaplan (Eds.), Methods in Enzymology Plant Cell Membranes, 148 (pp. 350-381). Academic Press, San Diego (CA).
Liu, Y., Wang, X., Wang, X., Gao, W., & You, C. (2022). Identification and functional characterization of apple MdCKX5. 2 in root development and abiotic stress tolerance. Horticulturae, 8(1), 62.
Lu, C. Y. (1993). The use of thidiazuron in tissue culture. In Vitro Cellular & Developmental Biology-Plant, 29, 92-96.
Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398.
Mahmoudi Surestani, M., & Omidbeigi, R. (2012). Comparison of vegetative body performance, amount and composition of essential oil of Mexican flower (Agastache foeniculum Kuntze) in field and greenhouse conditions under drought stress treatment. Plant Products, 36 (4), 43-53. (In Persian)
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498.
Mohamed, Y. F. Y., Zewail, R. M., Sami, R., Al-Mushhin, A. A., Alyamani, A., Aljahani, A. H., & El-Desouky, H. S. (2022). Effect of pinching and paclobutrazol on, flowering, chemical constituents, and histological features of Tecoma capensis (Thunb.) Lindl. Science of Advanced Materials, 14(3), 447-461.
Motsa, N. M., Soundy, P., Steyn, J. M., Learmonth, R. A., Mojela, N., & Teubes, C. (2006). Plant shoot age and temperature effects on essential oil yield and oil composition of rose-scented geranium (Pelargonium sp.) grown in South Africa. Journal of Essential Oil Research, 18(sup1), 106-110.
Mutui, T. M., Emongor, M. J., & Hutchinson, M. J. (2004). Influence of plant growth regulators on postharvest characteristics of Alstroemeria cut flowers. Discovery and Innovation, 16(3), 195-201.
Mutui, T. M., Mibus, H., & Serek, M. (2008). Effects of phytohormones and dark storage on postharvest quality of Pelargonium cuttings. African Journal of Horticultural Science, 1, 19-32.
Nonami, H., Wu, Y., & Boyer, J. S. (1997). Decreased growth-induced water potential (a primary cause of growth inhibition at low water potentials). Plant Physiology, 114(2), 501-509.
Nugent, G., Wardley-Richardson, T., & Lu, C. Y. (1991). Plant regeneration from stem and petal of carnation (Dianthus caryophyllus L.). Plant Cell Reports, 10(9), 477-480.
Omidbaigi, R., Hassani, A., & Sefidkon, F. (2003). Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. Journal of Essential oil-bearing plants, 6(2), 104-108.
Pospisilova, J. (2003). Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biologia Plantarum, 46, 491-506.
Pospisilova, J., Vagner, M., Malbeck, J., Travnickova, A., & Batkova, P. (2005). Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biologia Plantarum, 49, 533-540.
Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjarvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal Integrative Plant Biology, 56, 1-23.
Radhakrishnan, R., Ramachandran, A., & Ranjitha Kumari, B. D. (2009). Rooting and shooting: dual function of thidiazuron in in vitro regeneration of soybean (Glycine max L). Acta Physiologiae Plantarum, 31, 1213-1217.
Rasouli, O., Ahmadi, N., Behmanesh, M., & Nergi, M. D. (2015). Effects of BA and TDZ on postharvest quality and expression of laccase and aquaporin genes in cut rose ‘Sparkle’. South African Journal of Botany, 99, 75-79.
Rezaei Nejad, A., & Ismaili, A. (2014). Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media. Journal of the Science of Food and Agriculture, 94(5), 905-910.
Rezaei Nejad, A., Faizian, M., & Sephond, K. (2013). Effect of water deficit stress on growth, yield, essential Oil oil content and composition of Pelargonium graveolens L. Plant Production Technology, 5(1), 83-94. (In Persian).
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111.
Safari, M., Mousavi-Fard, S., Rezaei Nejad, A., Sorkheh, K., & Sofo, A. (2022). Exogenous salicylic acid positively affects morpho-physiological and molecular responses of Impatiens walleriana plants grown under drought stress. International Journal of Environmental Science and Technology, 19, 969-984.
Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought stress in plants: causes, consequences, and tolerance. In M. A. Hossain, S. H. Wani, S. Bhattacharjee, D. J. Burritt & L. P. Tran (Eds.), Drought stress tolerance in plants 1, 1-16.
Sayd, S. S., Taie, H. A., & Taha, L. S. (2010). Micropropagation, antioxidant activity, total phenolics and flavonoids content of Gardenia jasminoides ellis as affected by growth regulators. International Journal of Academic Research. 2, 184–191.
Sehrawat, S. K., Dahiya, D. S., Singh, S. & Rana, G. S. (2003). Effect of nitrogen and pinching on growth, flowering and yield of marigold (Tagetes erecta L.) cv. African Giant Double Orange. Haryana Journal of Horticultural Sciences. 32, 59-60.
Shalan, E. E., Soliman, S. S., Mahmoud, A. A., Al-Khayri, J. M., ALshamrani, S. M., Safhi, F. A., & Hassanin, A. A. (2023). Micropropagation of daylily (Hemerocallis fulva) from crown-tip explants and assessment of somaclonal variation of in vitro- propagated plants using SCoT markers. Phyton, 92(7), 2183-2196.
Taiz, L. D., & Zeiger, E. (2006). Plant physiology. Sunderland (Massachusetts): Sinauer Associates.
Turkyilmaz Unal, B.  (2018). Thidiazuron as an elicitor in the production of secondary metabolite. In N. Ahmad & M. Faisal, Thidiazuron: from urea derivative to plant growth regulator. Springer Singapore.
Wainwright, H., & Irwin, H. L. (1987). The effects of paclobutrazol and pinching on Antirrhinum flowering pot plants. Journal of Horticultural Science, 62(3), 401-404.
Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant. Archives of Environmental Contamination and Toxicology, 56, 723-731.
Wang, Y., Shen, W., Chan, Z., & Wu, Y. (2015). Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thalianaFrontiers in Plant Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. In H. Sies, R. Douce, N. Clowick & N. Kaplan (Eds.), Methods in Enzymology Plant Cell Membranes, 148 (pp. 350-381). Academic Press, San Diego (CA).
Science, 6, 1004.
Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., & Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobaccoThe Plant Cell, 22(12), 3905-3920.
Zavaleta-Mancera, H. A., López-Delgado, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-Garcia, C., Vargas-Suárez, M., & Ougham, H. (2007). Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. Journal of Plant Physiology, 164(12), 1572-1582.
Zhang, M., Liu, L., Chen, C., Zhao, Y., Pang, C., & Chen, M. (2022). Heterologous expression of a Fraxinus velutina SnRK2 gene in Arabidopsis increases salt tolerance by modifying root development and ion homeostasis. Plant Cell Reports, 41(9), 1895-1906.
Zieslin, N., Hurwitz, A., & Halevy, A. H. (1975). Flower production and the accumulation and distribution of carbohydrates in different parts of Baccara rose plants as influenced by various pruning and pinching treatments. Journal of Horticultural Science, 50(4), 339-348.
Zomorrodi, N., Rezaei Nejad, A., Mousavi-Fard, S., Feizi, H., Tsaniklidis, G., & Fanourakis, D. (2022). Potency of titanium dioxide nanoparticles, sodium hydrogen sulfide and salicylic acid in ameliorating the depressive effects of water deficit on periwinkle ornamental quality. Horticulturae, 8(8), 675.