ترغیب محتوای متابولیتهای ثانوی و ظرفیت آنتیاکسیدانی کالوس کلپوره در شرایط تیمار با بنزیلآمینو پورین، نفتالناستیکاسید و متیلجاسمونات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست‌شناسی، دانشکده‌علوم، دانشگاه‌فردوسی‌مشهد، مشهد، ایران

2 گروه زیست شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

یکی از مهمترین عوامل حفظ گیاهان و به‌ویژه گیاهان دارویی استفاده از روش‌های زیست‌فناوری درجهت تولید و افزایش متابولیت‌های دارویی است. این پژوهش با هدف بررسی محتوای متابولیت‌های ثانوی گیاه کلپوره و افزایش آن‌ها در نتیجه تیمار با الیسیتورمتیل‌جاسمونات در شرایط کشت در‌شیشه به‌جای استفاده مستقیم از گیاه دارویی انجام شد. جهت تولید کالوس، ریزنمونه برگ از گیاه رشدیافته در شرایط هیدروپونیک تهیه شد و در محیط‌کشت MS حاوی غلظت‌های مختلف از هورمون‌های بنزیل‌آمینوپورین (0، 5/0، 1 و 5/1 میلی‌گرم درلیتر) و نفتالن‌استیک‌اسید (0، 5/0 و 1 میلی‌گرم درلیتر)، به صورت مجزا و تلفیقی کشت شد. نمونه کالوس‌های منتخب با بیشترین درصد‌کالزایی و وزن‌خشک، تحت تیمار با الیسیتور متیل‌جاسمونات (50،0 ، 100و 200 میکرومولار) قرار گرفتند. محتوای دستجات مختلف ترکیبات‌فنلی و ظرفیت آنتی‌اکسیدانی در کالوس‌های تیمارشده ارزیابی شد. کالزایی صد درصد درشرایط هورمونی تیمار مجزا بنزیل‌آمینوپورین و همچنین تلفیق آن با هورمون نفتالن‌استیک‌اسید مشاهده شد. بیشترین وزن‌تر و خشک کالوس‌ها نیزدر تیمارهای یک و 5/1 میلی گرم در لیتر بنزیل‌آمینوپورین و تلفیق بنزیل‌آمینوپورین (5/1 میلی‌گرم در لیتر) و نفتالن‌استیک‌اسید (5/0 میلی گرم در لیتر) ثبت شد. حداکثر محتوای کل ترکیبات فنلی، فلاونوئید، فلاون، O- دی فنل، اسیدهای‌فنلی و رزمارینیک‌اسید در تیمار با متیل‌جاسمونات 50 میکرومولار مشاهده شد که نسبت به دیگر غلظت‌های به‌کار رفته، دارای تفاوت‌های معنی‌داری بود. فعالیت آنتی‌اکسیدانی DPPH و FRAP نیز به‌ترتیب دارای بیشینه 24/0 ± 066/2 میلی گرم درلیتر و 61/33 ± 79/383 میلی‌گرم آهن بر صدگرم ماده خشک، در تیمار 50 میکرومولار متیل‌جاسمونات و در تیمار تلفیق بنزیل‌آمینوپورین (5/1 میلی‌گرم در لیتر) و نفتالن‌استیک‌اسید (5/0 میلی گرم در لیتر) بودند. برمبنای نتایج، الیسیتور متیل‌جاسمونات در غلظت بهینه می‌تواند نقش ترغیبی در افزایش ترکیبات موثره‌دارویی کلپوره داشته باشد و محرکی برای سنتز ترکیبات‌فنلی و در ادامه افزایش توان آنتی‌اکسیدانی کالوس آن باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Induction of Secondary Metabolites Contents and Antioxidant Capacity of Teucrium polium Callus under Treatment with Naphthalene Acetic Acid, Benzylaminopurine, and Methyl Jasmonate

نویسندگان [English]

  • Mahshid Tabarifard 1
  • Monireh Cheniany 2
  • Ali Ganjeali 1
1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

One of the most important factors for the preservation of plants, medicinal plants in particular, is the use of biotechnological methods for increasing the production of secondary metabolites. This study was performed with the aims of evaluating and enhancing the secondary metabolites contents of Teucrium polium under in vitro culture by application of methyl jasmonate as elicitor. For callus induction, immature leaf explants were obtained from the plants grown under hydroponic condition and were cultured on MS medium supplied with various concentrations of Benzylaminopurine (BAP) (0, 0.5, 1, and 1.5 mg/L) in combination with Naphthalene acetic acid (NAA) (0, 0.5, and 1 mg/L). Regarding the highest percentage of callus induction frequency and mean of calli dry weight, the selected cultures were treated with methyl jasmonate (50, 100, and 200 μM). The content of different groups of phenolic compounds and antioxidant capacity were evaluated. The highest percentage of callus induction (100%) was achieved in the medium supplemented by BAP individually as well as in combination with NAA. The maximum fresh and dry weights of calli were achieved at 1.5 mg/L BAP + 0.5 mg/L NAA, 1.5 mg/L BAP, and 1 mg/L BAP. The calli treated with 50 μM methyl jasmonate yielded the maximum contents of phenolic compounds, flavonoids, flavones, O-diphenol, phenolic acids, and rosmarinic acid that differed significantly from calli obtained from other methyl jasmonate concentrations. The highest antioxidant activity with IC50 of 2.066 ± 0.24 µg/mL using DPPH assay, and 383.79 ± 33.61 mg Fe+ 100g-1 DW using FRAP were in 50 μM methyl jasmonate and 1.5 mg/L BAP + 0.5 mg/L NAA treatment. Based on the results, methyl jasmonate in optimal concentration can play a promotive role in increasing the effective pharmacological compounds of T. polium and can be considered as a stimulus for the synthesis of phenolic compounds and further increase of the antioxidant power in callus.

کلیدواژه‌ها [English]

  • Antioxidant
  • Elicitor
  • Flavonoid
  • Rosmarinic acid
  • Teucrium polium

Extended Abstract

Introduction

    One of the most important factors for the preservation of plants, in particular medicinal ones, is the use of biotechnological methods for increasing the production of secondary metabolites. The main medicinal compounds of Teucrium polium are divided into several groups based on their origin, among which phenolic compounds, flavonoids and phenolic acids have a major contribution. It has been reported that any factor affecting the gene expression level and activity of phenylalanine ammonia-lyase can affect the synthesis of phenolic compounds. Methyl jasmonate is one of the most important abiotic elicitors, which plays a key role to induce a large number of genes related to the defense pathway. It has been reported that these esters can promote the biosynthesis of several kinds of secondary metabolites including indole alkaloids, sesquiterpenes and phenolic compounds. The present study was conducted with the aim of investigating the effect of exogenous application of benzylaminopurine (BAP) and naphthalene acetic acid (NAA) on callus induction of Teucrium polium leaf explants, and the effect of methyl jasmonate elicitation on the phenolic compounds and antioxidant activity in calli under the same conditions

 

Material and Methods

   Immature leaf of the T. polium grown under hydroponic condition were cultured on MS medium supplied with various concentrations of BAP (0, 0.5, 1, and 1.5 mg/L) in combination with NAA (0, 0.5, and 1 mg/L). Regarding the highest callus induction frequency and mean weight of dry calli, the selected cultures were treated with different concentrations of methyl jasmonate (50, 100, and 200 μM). Explants without methyl jasmonate treatment were considered as controls. The methyl jasmonate treated calli were collected, air dried and extracted at room temperature. The content of phenolic compounds, flavonoids, flavones, O-diphenol, phenolic acids, and rosmarinic acid as well as antioxidant capacity (measured by both DPPH Free Radical Inhibition and Ferric Reducing Antioxidant Power assays) were evaluated.

 

Results

   The highest percentage of callus induction (100%) from the leaf explants was achieved from the medium supplemented by BAP individually as well as in combination with NAA. The maximum fresh and dry weights of calli were achieved in three combinations of growth regulators, i.e., (i) 1.5 mg/L BAP + 0.5 mg/L NAA, (ii) 1.5 mg/L BAP, and (iii) 1 mg/L BAP. The maximum contents of phenolic compounds, flavonoids, flavones, O-diphenol, phenolic acids, and rosmarinic acid were measured at pretreatment of the callus with 50 μM methyl jasmonate, with statistically significant differences with other methyl jasmonate concentrations. The highest antioxidant activity with an IC50 of 2.066 ± 0.24 µg/mL using DPPH assay, and 383.79 ± 33.61 mg Fe+ 100g-1 DW using FRAP was in 50 μM methyl jasmonate and 1.5 mg/L BAP + 0.5 mg/L NAA treatment.

 

Discussion

   It has been confirmed that jasmonates increase the expression of genes and transcription factors related to secondary metabolite biosynthesis in cell culture. The increase in the activity of phenylpropanoid pathway-related enzymes (PAL, C4H, 4CL, CAD, POD, and PPO) and their gene expression is a result of this class of elicitors, which are important factors in the synthesis of phenolic compounds. The results of the present study also showed the role of jasmonate in increasing most of the studied metabolites. However, high concentrations of methyl-jasmonate with excessive accumulation of reactive oxygen species lead to oxidation of macromolecules such as nucleic acids, proteins, and lipids, which ultimately leads to cell death.

 

Conclusion

   The results of the present research showed that the application of methyl jasmonate in optimal concentration can play an effective role in increasing the active pharmacological compounds of T. polium. Also, the use of methyl jasmonate in combination with growth regulators had positive effects on the synthesis of phenolic compounds and further increase of the antioxidant power in calli.

الیاسی، لیلا؛ مهرابی، علی اشرف؛ صیدی، مهدی و صفری، زینب (1395) تأثیر منشأ ریزنمونه و غلظت‌های مختلف تنظیم‌کننده‌های رشد بر بهینه‌سازی سوسپانسیون سلولی مرزه بختیاری (.Satureja bachtiarica L). تحقیقات گیاهان دارویی و معطر ایران، 32(6)، 998-1009.
خدایاری، مهدیه؛ امیدی، منصور؛ شاه نجات بوشهری، علی اکبر؛ یزدانی، داراب؛ نقوی، محمدرضا و کدخدا، زهره (1393) اثر الیسیتور زیستی و نانوالیسیتور بر افزایش تولید برخی آلکالوئیدها در گیاه خشخاش Papaver somniferum L.. مجله علوم باغبانی ایران، 3(45)، 287-295.
جاویدی مقدم، مریم؛ چنیانی، منیره؛ گنجعلی، علی و لاهوتی، مهرداد (1395). بررسی کالوس زایی و توان آنتی اکسیدانی عصاره متانولی حاصل از ریزنمونه های مختلف گیاه  Teucrium polium. مجله زیست شناسی گیاهی ایران، 8(29)، 37-52.
سرخیل، پانته‌آ؛ امیدی، منصور؛ پیغمبری، سید‌علی و دوازده امامی، سعید (1388) تأثیر هورمونی و ریزنمونه بر کالزایی، باززایی و کشت سوسپانسیون سلولی در رازیانه (Foeniculum vulgare Mill). تحقیقات گیاهان دارویی و معطر ایران، 25(3)، 364-375.
قسیمی حق، زیبا؛ جوکار، سمیه؛  بداقی، حجت اله و مدرس، معصومه (1397) تأثیر سالیسیلیک اسید و متیل جاسمونات بر تولید رزمارینیک اسید و کافئیک اسید در کشت کالوس نوروزک (Salvia lerrifolia Benth). زیست شناسی گیاهی ایران، 10(1)، 67-80.
کوچکی، علیرضا؛ نصیری محلاتی، مهدی؛ عزیزی، کلثومه و خزایی، حمید رضا (1387). بررسی نیازهای آگرواکولوژیک گیاه کلپوره. مجله پژوهش­های زراعی ایران، 6(2)، 395-404.
محمدزاده، زهرا؛ چنیانی، منیره و سمیعی، لیلا (1400). اثر متیل جاسمونات، IAA ، BAP بر توان کالزایی، محتوای برخی ترکیبات فنلی و ظرفیت آنتی اکسیدانی کلپوره (Teucrium polium L.). مجله فرآیند و کارکرد گیاهی، 10(45)، 267-284.
هاشمیان، ملیحه؛ گنجعلی، علی و چنیانی، منیره (1399). تاثیر الیسیتورهای متیل جاسمونات و سالیسیلیک اسید بر میزان تولید متابولیت های ثانویه و ظرفیت آنتی اکسیدانی گیاه کلپوره. مجله زیست شناسی گیاهی ایران، 12(44)، 61-76.

REFRENCES

Abdulhafiz, F. (2022). Plant cell culture technologies: A promising alternatives to produce high-value secondary metabolites. Arabian Journal of Chemistry, 15, 104161.
Acıkgoz, M. A., Kara, S. M., Aygun, A., Ozcan, M. M. & Ay, E. B. (2019). Effects of methyl jasmonate and salicylic acid on the production of camphor and phenolic compounds in cell suspension culture of endemic Turkish yarrow (Achillea gypsicola) species. Turkish Journal of Agriculture and Forestry, 43, 351-359.
Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology, 49, 510-514.
Bahreini, M., Omidi, M., Bondarian, F., & Gholibaygian, M. (2015). Metabolites screening of nano elicited in vitro Iranian fennel (Foeniculum vulgare). American Journal of Biology and Life Sciences, 3(5), 194-198.
Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9(1), 26-32.
Bakhtiar, Z., Mirjalili, M. H., & Sonboli, A. (2016). In vitro callus induction and micropropagation of Thymus persicus (Lamiaceae), an endangered medicinal plant. Crop Breeding and Applied Biotechnology, 16, 48-54.
Bhojwani, S. S. & Dantu, P. K. (2013). Plant Tissue Culture: An Introductory Text. London, Springer Publications.
Carrasco-Pancorbo, A., Cerretani, L., Bendini, A., Segura-Carretero, A., Del Carlo, M., Gallina-Toschi, T. & Fernandez-Gutierrez, A. (2005). Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. Journal of Agricultural and Food Chemistry, 53(23), 8918-8925.
Chu, Y. H., Chang, C. L. & Hsu, H. F. (2000). Flavonoid content of several vegetable and their antioxidant activity. Journal of the Science of Food and Agriculture, 80, 561-566.
Crozier, A., Clifford, M. N., & Ashihara, H. (2007). Plant secondary metabolites: occurrence, structure and role in the human diet. Angewandte Chemie International Edition
de Torre, M. P., Cavero, R. Y., Calvo, M. I. & Vizmanos, J. L. (2019). A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants, 8(5), 142.
Dixon, R. A., Dey, P. M. & Lamb, C. J. (1983). Phytoalexins: enzymology and molecular biology. Advances in Enzymology and Related Areas of Molecular Biology, 55(1), 69.
Dong, J., Wan, G. & Liang, Z. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99-104.
Dowom, S. A., Abrishamchi, P., Radjabian, T. & Salami, S. A. (2017). Enhanced phenolic acids production in regenerated shoot cultures of Salvia virgata Jacq. after elicitation with Ag+ ions, methyl jasmonate and yeast extract. Industrial Crops and Products, 103, 81-88.
Dronne, S., Jullien, F., Caissard, J.C. & Faure, O. (1999). A simple and efficient method for in vitro shoot regeneration from leaves of lavandin (Lavandula intermedia Emeric ex Loiseleur). Plant Cell Reports, 18, 429–433.
Duke, J., Bogenschuts, J. & Cellier, D. (2002). Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian-Australasian Journal of Animal Sciences, 23(10), 1348-1353.
Echeverrigaray, S., Zacaria, J. & Beltrão, R. (2010). Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. The American Phytopathological Society, 100(2), 199-203.
Elyasi, L., Mehrabi, A. A., Seyedi, M. & Safari, Z. (2017). Effect of explant origin and different concentrations of growth regulators on optimization of cell suspension in Satureja bachtiarica L. Iranian Journal of Medicinal and Aromatic Plants, 32(6), 998-1009. (In Persian).
Field, T. S., Lee, D. W. & Holbrook, N. M. (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 127(2), 566-574.
Flurkey, W. H. & Inlow, J. K. (2008). Proteolytic processing of polyphenol oxidase from plants and fungi. Journal of Inorganic Biochemistry, 102: 2160-2170.
Furden, B., Humburg, A. & Fuss, E. (2005). Influence of methyl jasmonate on podophyllotoxin and 6-methoxy podophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Reports, 24, 312–317.
Gerth, A., Schmidt, D. & Wilken, D. (2006). The production of plant secondary metabolites using bioreactors. In XXVII International Horticultural Congress-IHC2006: International Symposium on Plant Biotechnology, 764: 95-104.
Ghasemzadeh, M. R., Amin, B., Mehri, S., Mirnajafi-Zadeh, S. J. & Hosseinzadeh, H. (2016). Effect of alcoholic extract of aerial parts of Rosmarinus officinalis L. on pain, inflammation and apoptosis induced by chronic constriction injury (CCI) model of neuropathic pain in rats. Journal of Ethnopharmacology, 194, 117-130.
Ghasimi Hagh, Z., Jokar, S., Bodaghi, H. & Modarres, M. (2018). Effect of salicylic acid and methyl jasmonate on the production of rosmarinic acid and caffeic acid in callus culture of lerrifolia Benth. Iranian Journal of Plant Biology, 10(1), 67-80. (In Persian).
Ghorbanpour, M. (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal of Plant Physiology, 20, 249-256.
Goleniowski, M., Bonfill, M., Cusido, R. & Palazón, J. (2013). Phenolic Acids. In Ramawat, K., Mérillon, JM. (eds.) Natural Products. Springer, Berlin, Heidelberg. 
Goulas, V., Gomez-Caravaca, A. M., Exarchou, V., Gerothanassis, I. P., Segura-Carretero, A. & Gutiérrez, A. F. (2012). Exploring the antioxidant potential of Teucrium polium extracts by HPLC-SPE-NMR and on-line radical-scavenging activity detection. Food Science and Technology, 46, 104-109.
Goyal, SH. & Ramawat, K. G. (2008). Ethrel treatment enhanced isoflavonoids accumulation in cell suspension cultures of Pueraria tuberosa, a woody legume. Acta Physiologiae Plantarum, 30(6), 849 – 853.
Hakim, F. L., Shankar, C. G. & Girija, S. (2007). Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. Journal Agricultural and Food Chemistry, 55, 9109–17.
Hashemyan, M., Ganjeali, A. & Cheniany, M. (2020). Effect of methyl jasmonate and salicylic acid elicitors on the production of secondary metabolites and antioxidant capacity of Teucrium polium L. in-vitro. Iranian Journal of Plant Biology, 12(2), 61-76. (In Persian).
Hemmati, N., Cheniany, M., & Ganjeali, A. (2020). Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica, 44(2), 163-173.
Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, circular 347.
Ikeuchi, M., Sugimoto, K. & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell, 25, 3159-3173.
Javidi Moghadam, M., Cheniany, M., Ganjeali, A. & Lahouti, M. (2016). An investigation on callogenesis and antioxidant capacity of different explants of Teucrium polium. Iranian Journal of Plant Biology, 8(29), 37-52. (In Persian).
Kandouz, M., Alachkar, A., Zhang, L., Dekhil, H., Chehna, F., Yasmeen, A. & Moustafa, A. E. A. (2010). Teuricum polium plant extract inhibits cell invasion and motility of human prostate cancer cell via the restoration of the E-cadherin/catenin complex. Journal of Ethnopharmacology, 129, 410-415.
Khodayari, M., Omidi, M., & Shahnejat Bushehri, A. (2014). Effect of a biotic elicitor and nano elicitor on some alkaloids production in Papaver somniferum L. Iranian Journal of Horticulture, 7,(3),287-295. (In Persian)
Kliebenstein, D. J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell and Environment, 27(6), 675-684.
Koocheki, A., Nassiri Mahallati, M., Azizi, G. & Khazaei, H.R. (2009). Feasibility study for domestication of Teucrium polium L. based on ecological agriculture. Iranian Journal of Field Crops Research, 2(6), 395-404. (In Persian).
Kosalec, I., Bakmaz, M., Pepeljnjak, S. & Vladimir-Knezevic, S. A. N. D. A. (2004). Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharmaceutica, 54(1), 65-72.
Li, T., Elhadi, D. & Chen, G. Q. (2017). Co-production of microbial poly hydroxyl alkanoates with other chemicals. Metabolic Engineering, 43, 29-36.
Marinova, D., Ribarova, F. & Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255-26.
Matkowski, A. (2008). Plant in vitro culture for the production of antioxidants. Biotechnology Advances, 26(6), 548-560.
Mattila, P. & Hellström, J. (2007). Phenolic acids in potatoes, vegetables, and some of their products. Journal Food Composition Analysis, 20, 152-160.
Modarres, M., Bahabadi, S. E. & Yazdi, M. (2018). Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology, 70, 741-750.
Mohammadzadeh, Z., Cheniany, M. & Samiei, L. (2021). Effect of methyl jasmonate, IAA and BAP on callogenesis potential, content of some phenolic compounds and antioxidant capacity of Teucrium polium L. Journal of Plant Process and Function, 10 (45), 267-284. (In Persian).
Nakashima, A., Chen, L., Thao, N. P., Fujiwara, M., Wong, H. L., Kuwano, M. & Shimamoto, K. (2008). RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. The Plant Cell, 20(8), 2265-2279.
Oksman-Caldentey, K. M. & Inzé, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science, 9(9), 433-440.
Omidi, M., Farzin, N. (2012). Biotechnology approaches for improvement of medicinal plants. Modern Genetics Journal, 7, 203-234.
Öztürk, M., Duru, ME., İnce, B., Harmandar, M. & Topçu, G. (2010). A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chemistry, 123, 1352-1356.
Park, E.J., Zhao, Y.Z., Kim, Y.C. & Sohn, D.H. (2009). Preventive effects of a purified extract isolated from Salvia miltiorrhiza enriched with tanshinone I, tanshinone IIA and cryptotanshinone on hepatocyte injury in vitro and in vivo. Food and Chemical Toxicology, 47(11), 2742-8.
Rabbaa, M. M., Shibli, R. & Shatnawi, M. (2012). Cryopreservation of Teucrium polium L. shoot tips by vitrification and encapsulation dehydration. Plant Cell, Tissue and Organ Culture, 110, 371-382.
Raei, M., Esna-Ashari, M., & Khodayari, M. (2016). Abiotic elicitors and medicinal plants biotechnology. Journal of Cell and Tissue 7, 333-342.
Rao, S. R. & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101-153.
Ruiz, J. M. & Romero, L. (2001). Bioactivity of the phenolic compounds in higher plants. Studies in Natural Products Chemistry, 25, 651-681.
Sadeghi, B. & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 310-315.
Sahoo, Y., Pattnaik, S. K. & Chand, P. K. (1997). In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum L. (sweet basil) by axillary shoot proliferation. In Vitro Cellular and Developmental Biology-Plant, 33(4), 293-296.
Saleh Abadi, S. & Mehraban Sang Atash, M. (2015). Evaluation of the antioxidant activity and total phenols, flavonoids in methanolic, dichloromethane and ethyl acetate extracts of aerial parts of Rubia florida. Journal of North Khorasan University of Medical Sciences, 7(1), 101-112.
Samadi, S., Ghasemnezhad, A. & Alizadeh, M. (2014). Investigation on phenylalanine ammonia-lyase activity of artichoke (Cynara scolymus L.) affected by methyl jasmonate and salicylic acid in in-vitro conditions. Plant Products Research Journal, 21 (4), 135-148.
Sarkheil, P., Omidi, M., Peyghambari, S. A. & Davazdahemami, S. (2009). The effects of plant growth regulators and explants on callogenesis, regeneration and suspension culture in Foeniculum vulgare Mill. Iranian Journal of Medicinal and Aromatic Plants, 25, 364-375. (In Persian).
Seyed Tabatabae, B. E. & Omidi, M. (2011). Plant cell and tissue culture. University of Tehran Press.Tehran. (In Persian).
Serrano, J., Goñi, I. & Saura-Calixto, F. (2007). Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Research International, 40(1), 15-21.
Shoja, A. A., Çirak, C., Ganjeali, A. & Cheniany, M. (2022). Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture of Salvia tebesana Bunge in response to nano-TiO2 and methyl jasmonate elicitors. Plant Cell, Tissue and Organ Culture, 149(1), 423-440.
Siddharthan, S., Yi-Zhong, C., Harold, C. & Mei, S. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry, 102, 938–953.
Skrzypczak-Pietraszek, E., Słota, J. & Pietraszek, J. (2014). The influence of L-phenylalanine, methyl jasmonate and sucrose concentration on the accumulation of phenolic acids in Exacum affine Balf. f. ex Regel. shoot culture. Acta Biochimica Polonica, 61(1), 47-53.
Soltanipool, M. M., Mohamadi, A., Rahnama, H. & AbbasZadeh, B. (2011). Callusogenesis investigation of lemon balm (Melissa officinalis L.). Journal of Agronomy and Plant Breeding, 7(1), 45-54.
Thiem, B. & Krawczyk, A. (2010). Enhanced isoflavones accumulation in methyl jasmonate-treated in vitro cultures of kudzu (Pueraria lobata Ohwi). Herba Polonica, 56, 48-56.
Yousefian, S., Lohrasebi, T., Farhadpour, M. & Haghbeen, K. (2020). Effects of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture, 142, 285-297.
Yukimune, Y., Tabata, H., Higashi, Y. & Hara, Y. (1996). Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature Biotechnology, 14, 1129-1132.
Zaker, A., Sykora, C., Gössnitzer, F., Abrishamchi, P., Asili, J., Mousavi, S. H., & Wawrosch, C. (2015). Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Industrial Crops and Products, 67, 97-102.
Zhang, L. & Xing, D. (2008). Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant and Cell Physiology, 49(7), 1092-1111.
Zhishen, J., Mengcheng, T. & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.
Zivyar, S., Miri, S. M. & Rahimi Meydani, A. (2014). The effect of plant growth regulator of BAP and NAA on callus formation from corm explants of gladiolus. The first National Congress of Flower and Ornamental Plants of Iran, Karj. Alborz, Iran.