تاثیر طیف‎‌‎های مختلف نور ‏LED‏ بر ویژگی‌های مورفولوژیکی و محتوای عناصر معدنی در نشاهای ‏پیوندی و غیرپیوندی گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 استادیار، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این پژوهش، تاثیر طیف­های مختلف نور LED شامل 100درصد نور قرمز، 100درصد نور آبی، 70درصد نور قرمز + 30 درصد نور آبی و همچنین 100درصد نور سفید با شدت نور یکسان 5± 75 ماکرومول بر مترمربع در ثانیه، به مدت 30 روز بر میزان رشد و محتوای عناصر معدنی در نشاهای گوجه‌فرنگی غیرپیوندی و پیوند شده روی پایه  Maxifort مورد بررسی قرار گرفت. مدت روشنایی، دما و رطوبت اتاق رشد به ترتیب 16 ساعت، 2± 21/25 (شب/روز) درجه سلسیوس و 95 درصد تنظیم شدند. نتایج نشان داد بیشترین میزان طول ساقه در نشاهای غیرپیوندی زیر نور 100درصد قرمز بدست آمد. بیشترین قطر ساقه نیز در نور آبی و قرمز-آبی بدست آمد. بالاترین وزن تر ریشه در زیر نور سفید و قرمز-آبی و بیشترین وزن خشک ریشه زیر نور قرمز-آبی بدست آمد. بالاترین میزان سطح برگ، وزن خشک شاخساره و کل در نشاهای غیرپیوندی زیر نور قرمز-آبی بدست آمد. بیشترین میزان فسفر در نشاهای غیرپیوندی زیر نور قرمز بود. نشاهای پیوندی زیر نورهای قرمز، آبی و قرمز-آبی و همچنین نشاهای غیرپیوندی زیر نورهای سفید و قرمز-آبی بیشترین میزان پتاسیم را داشتند. نشاهای پیوندی زیر نور آبی بالاترین میزان جذب کلسیم را دارا بودند. همچنین بیشترین میزان جذب منیزیم در نشاهای غیرپیوندی زیر نور سفید بدست آمد. در مجموع، نتایج این پژوهش نشان داد کاربرد 70درصد نور قرمز + 30 درصد نور آبی در کنار استفاده از یک پایه قدرتمند مانند مکسی فورت، می­تواند باعث بهبود رشد و جذب بهتر عناصر معدنی در نشاهای گوجه‌فرنگی ­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of LED light spectrum on morphological traits and mineral element ‎concentrations of grafted and non-grafted tomato seedlings

نویسندگان [English]

  • Seyed Reza Soltani 1
  • Hossein Arouiee 2
  • Reza Salehi 3
  • Seyed Hossein Nemati 4
1 Ph. D. Candidate, Faculty of Agriculture, Ferdowsi University ‎of Mashhad, Mashhad, Iran
2 Associate Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
4 Assistant Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

In this experiment, we investigated impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white with the same light intensity 75±5 µmol m-2 s-1 for 30 days on the growth and mineral element concentrations in grafted onto ‘Maxifort’ rootstock and non-grafted tomato seedlings. Photoperiod, temperature, and relative humidity of the growth chamber were maintained at 16 h, 25/21±2 °C (day/night), and 95%, respectively. Results showed that the maximum of plant height was obtained in non-grafted seedlings under 100% R light. The maximum of stem diameter was obtained under 100% B and 70% R:30 %B treatments. The maximum of root fresh weight was obtained under 100% W and 70 % R:30 %B treatments, while the maximum of root dry weight was obtained under 70 % R:30 % B light treatment. The maximum of leaf area, shoot and total dry weight were obtained in non-grafted seedlings under 70 % R:30 % B light treatment. In addition, non-grafted seedlings under 100% R treatment had the highest P concentration. The maximum of K was obtained in grafted seedlings under 100% B, 100% R and 70 % R:30 %B light treatments and non-grafted seedlings under 100% W and 70 % R:30 % B light treatments. Grafted seedlings under 100% B had the highest Ca concentration. In addition, the maximum of Mg was obtained in non-grafted seedlings under 100% W treatment. Collectively, our results showed that combination of 70% red and 30% blue light and as well as the use of a powerful rootstock like ‘Maxifort’ could promotes plant growth and mineral element concentrations for tomato seedlings.

کلیدواژه‌ها [English]

  • Artificial light
  • grafted seedling
  • light quality
  1. Ahmad, M., Grancher, N., Heil, M., Black, R. C., Giovani, B., Galland, P., & Lardemer, D. (2002). Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in ArabidopsisPlant Physiology129(2), 774-785.
  2. Amoozgar, A., Mohammadi, A., & Sabzalian, M.R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica, 55, 85-95.
  3. Bantis, F., Koukounaras, A., Siomos, A. S., Fotelli, M. N., & Kintzonidis, D. (2020). Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Scientia Horticulturae261, 109000.
  4. Barickman, T. C., Kopsell, D. A., Sams, C. E., & Morrow, R. C. (2020). Sole-source LED lighting and fertility impact shoot and root tissue mineral elements in Chinese kale (Brassica oleracea alboglabra). Horticulturae6(3), 40.
  5. Brazaitytė, A., Vaštakaitė-Kairien, V., Jankauskienė, J., Viršilė, A., Samuolienė, G., Sakalauskienė, S., ... & Duchovskis, P. (2018). Effect of blue light percentage on mineral elements content in Brassica microgreens. Acta Horticulturae, 1271, (119-126).
  6. Camejo, D., Frutos, A., Mestre, T. C., del Carmen Piñero, M., Rivero, R. M., & Martínez, V. (2020). Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment, and Biotechnology61(1), 69-82.
  7. Colla, G., Pérez-Alfocea, F., & Schwarz, D. (2017). Vegetable grafting: principles and practices. CABI.
  8. Degni, B. F., Haba, C. T., Dibi, W. G., Soro, D., & Zoueu, J. T. (2021). Effect of light spectrum on growth, development, and mineral contents of okra (Abelmoschus esculentus). Open Agriculture6(1), 276-285.
  9. Dierck, R., Dhooghe, E., Van Huylenbroeck, J., Van Der Straeten, D., & De Keyser, E. (2017). Light quality regulates plant architecture in different genotypes of Chrysanthemum morifoliumScientia Horticulturae218, 177-186.
  10. Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews7(2), 231-250.
  11. Dutta Gupta, S., & Agarwal, A. (2017). Artificial lighting system for plant growth and development: Chronological advancement, working principles, and comparative assessment. In Light emitting diodes for agriculture: Smart Lighting, 1-25.
  12. Engels, C., Kirkby, E., & White, P. (2012). Mineral nutrition, yield and source–sink relationships. In Marschner's Mineral Nutrition of Higher Plants. Academic Press. 85-133.
  13. Esmaeilizadeh, M., Malekzadeh Shamsabad, M. R., Roosta, H. R., Dąbrowski, P., Rapacz, M., Zieliński, A., ... & Kalaji, H. M. (2021). Manipulation of light spectrum can improve the performance of photosynthetic apparatus of strawberry plants growing under salt and alkalinity stress. Plos one16(12), e0261585.
  14. Fang, L., Ma, Z., Wang, Q., Nian, H., Ma, Q., Huang, Q., & Mu, Y. (2021). Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. Journal of Plant Growth Regulation40(2), 668-678.
  15. Głowacka, B. (2004). The effect of blue light on the height and habit of the tomato Lycopersicon esculentum) transplant. Folia Horticulturae16(2), 3-10.
  16. Jang, Y., Goto, E., Ishigami, Y., Mun, B., & Chun, C. (2011). Effects of light intensity and relative humidity on photosynthesis, growth and graft-take of grafted cucumber seedlings during healing and acclimatization. Horticulture, Environment, and Biotechnology52(4), 331-338.
  17. Javanmardi, J. (2009). Scientific and practical basics for production of vegetable seedlings. (1st). Jahad Daneshgahi Publication, Mashhad. (In Farsi)
  18. Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L. F. (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science9, 2002.
  19. KAYAL, W. E., Allen, C. C., JU, C. J. T., Adams, E. R. I., KING‐JONES, S. U. S. A. N. N. E., Zaharia, L. I., ... & Cooke, J. E. (2011). Molecular events of apical bud formation in white spruce, Picea glauca. Plant, cell & Environment34(3), 480-500.
  20. Kurepin, L. V., Walton, L. J., Hayward, A., Emery, R. N., Pharis, R. P., & Reid, D. M. (2012). Interactions between plant hormones and light quality signaling in regulating the shoot growth of Arabidopsis thalianaBotany90(3), 237-246.
  21. Kumar, P., Rouphael, Y., Cardarelli, M., & Colla, G. (2015). Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. Journal of Plant Nutrition and Soil Science178(6), 848-860.
  22. Kumar, P., Rouphael, Y., Cardarelli, M., & Colla, G. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in Plant Science8, 1130.
  23. Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology13(5), 571-577.
  24. Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae127(2), 93-105.
  25. Li, Y., Liu, Z., Shi, Q., Yang, F., & Wei, M. (2021). Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Scientia Horticulturae290, 110500.
  26. Malekzadeh Shamsabad, M. R., Esmaeilizadeh, M., Roosta, H. R., Dąbrowski, P., Telesiński, A., & Kalaji, H. M. (2022). Supplemental light application can improve the growth and development of strawberry plants under salinity and alkalinity stress conditions. Scientific Reports12(1), 1-13.
  27. Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Tsaniklidis, G., Woltering, E. J., Fanourakis, D., ... & Kalaji, H. M. (2021). Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. International Journal of Molecular Sciences22(15), 8043.
  28. Naznin, M. T., Lefsrud, M., Gravel, V., & Azad, M. O. K. (2019). Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants8(4), 93.
  29. Neff, M. M., Fankhauser, C., & Chory, J. (2000). Light: an indicator of time and place. Genes & development14(3), 257-271.
  30. Nguyen, D. T., Kitayama, M., Lu, N., & Takagaki, M. (2020). Improving secondary metabolite accumulation, mineral content, and growth of coriander (Coriandrum sativum) by regulating light quality in a plant factory. The Journal of Horticultural Science and Biotechnology95(3), 356-363.
  31. Rivard CL, Louws FJ. (2008). Grafting to manage soilborne diseases in heirloom tomato production. Journal of Hortcultural Science, 43(7), 2104-11.
  32. Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and Plant Analysis Laboratory Manual. ICARDA
  33. Savvas, D., Savva, A., Ntatsi, G., Ropokis, A., Karapanos, I., Krumbein, A., & Olympios, C. (2011). Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. Journal of Plant Nutrition and Soil Science, 174(1), 154-162.
  34. Seif, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., Shomali, A., Fanourakis, D., ... & Woltering, E. (2021). Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemumFunctional Plant Biology48(5), 515-528.
  35. Singh, H., Kumar, P., Kumar, A., Kyriacou, M. C., Colla, G., & Rouphael, Y. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy10(2), 263.
  36. Tahmasebi, F. (2010). Physiological investigation of the irrigation effect with salty water from NaCl and CaCl2 sources on three genotype of Canola (Brassica napus L.) in Ahvaz climate. Master Thesis. Shahid Chamran University of Ahvaz, Iran. (In Farsi)
  37. Tamulaitis, G., Duchovskis, P., Bliznikas, Z., Breivė, K., Ulinskaite, R., Brazaityte, A., ... & Žukauskas, A. (2005). High-power light-emitting diode based facility for plant cultivation. Journal of Physics D: Applied Physics38(17), 3182.
  38. Wallace, C., & Both, A. J. (2016). Evaluating operating characteristics of light sources for horticultural applications. Acta Horticulturae, 1134, (435-444).
  39. Wang, L., Chen, X., Wang, Q., Hao, J., & Lan, J. (2011). Effect of different light of LED light quality on growth and antioxidant enzyme activities of Ganoderma lucidumZhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica36(18), 2471-2474.
  40. Yousef, A. F., Ali, M. M., Rizwan, H. M., Ahmed, M. A., Ali, W. M., Kalaji, H. M., ... & Chen, F. (2021). Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings. Plos One16(5), e0250210.
  41. Yu, X., Liu, H., Klejnot, J., & Lin, C. (2010). The cryptochrome blue light receptors. The Arabidopsis Book/American Society of Plant Biologists8.
  42. OuYang, F., Mao, J. F., Wang, J., Zhang, S., & Li, Y. (2015). Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway spruce [Picea abies (L.) Karst.]. PLoS One, 10(8), e0127896.