بررسی مولکولی و پاسخ‌های مورفو- فیزیولوژیک برخی دانهال‌های وحشی گیلاس تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، پژوهشکده میوه‌های معتدله و سردسیری، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ‏کرج، ایران

4 استادیار، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، پاکدشت، ایران

5 دانشیار، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

6 استاد، ‌مؤسسه ‏CEBAS-CSIC، اسپیناردو مورسیا، اسپانیا

چکیده

گیلاس (Prunus avium L.) جزو بهترین میوه‌ها برای تازه‌‌خوری می‌باشد که در صنعت میوه‌کاری ایران از جایگاه و اهمیت خاصی برخوردار است. با توجه به ژرم‌پلاسم غنی زیر جنس سراسوس (Cerasus) در ایران، دانش در مورد پتانسیل ژنتیکی این زیر جنس برای شناخت مخازن‌ژنی و توسعه استراتژی‌های موثر برای حفاظت از ژرم‌پلاسم مهم است. در این مطالعه، بذور ژنوتیپ‌های زیرجنس سراسوس متعلق به گونه‌های P. avium ،P. microcarpa  و P. incana  کشت شدند و در شرایط آبیاری کامل و بدون آبیاری با انجام تجزیه و تحلیل فیزیولوژیک در پاسخ به تنش مورد سنجش قرار گرفتند. از نقطه نظر ژنومی، تنوع ژنتیکی دانهال‌های این ژنوتیپ‌ها با استفاده از نشانگرهای توالی ساده تکراری (SSR) بررسی شد. از نظر مورفولوژیکی، گونه P. microcarpa  سطح برگ، ارتفاع و قطر ساقه کمتری را در مقایسه با گونه‌های P. incana  و به‌طور عمده  avium P. نشان داد. میزان فتوسنتز در دانهال‌ها طی تنش خشکی کاهش یافت ولی این کاهش در گونه P. avium ژنوتیپ Avi-Ala 11 (5.500 µmol CO2 m-2 s-1)  در مقایسه با گونه P. incana ژنوتیپInc-Kho  (10.760 µmol CO2 m-2 s-1) و گونه P. microcarpa ژنوتیپ Mic-Kor 3 (10.340 µmol CO2 m-2 s-1) بیشتر بود. نتایج نشان داد که هر دو گونه P. microcarpa  و P. incana  را می‌توان به‌عنوان پایه مقاوم به خشکی در گیلاسی‌ها و منبع ژنتیکی احتمالی اصلاح‌گران خشکی در نظر گرفت. نتایج این تحقیق همچنین می‌تواند به تعیین رابطه بین داده‌های فنوتیپی و مولکولی برای شناسایی نشانگرهای مولکولی مرتبط با تحمل به خشکی کمک ‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular studies and the morpho-physiological response of some wild cherry ‎genotypes under drought stress

نویسندگان [English]

  • Sara Jalili 1
  • Kazem Arzani 2
  • Naser Bouzari 3
  • Mahmoud Reza Roozban 4
  • Nima Ahmadi 5
  • Pedro Martínez-Gómez 6
1 Ph.D. Student, Faculty of Agriculture, Tarbiat Modares University, (TMU), Tehran, Iran
2 Professor, Faculty of Agriculture, Tarbiat Modares University, (TMU), Tehran, Iran
3 Associate Professor, Temperate Fruits Research Center, Horticultural Science Research Institute (HSRI), Agriculture, Education and ‎Extention Organization (AREEO), Karaj, Iran
4 Assistant Professor, University College of Agriculture and Natural Resources, University of Tehran, Pakdasht, Iran‎
5 Associate Professor, Faculty of Agriculture, Tarbiat Modares University, (TMU), Tehran, Iran
6 Professor, CEBAS-CSIC Institute, Espinardo, Murcia, Spain
چکیده [English]

Cherry (Prunus avium L.) is one of the best fresh fruits, which has a special place and importance in the Iranian fruit industry. Considering the rich germplasm of the Cerasus subgenus in Iran, knowledge of the genetic potential of this subgenus is important for identifying gene reservoirs and developing effective strategies for germplasm conservation. In this study, the seedling of some genotypes in the Cerasus subgenus P. avium, P. microcarpa, and P. incana species was assayed in full and without irrigation conditions performing physiological analysis in response to stress. From a genomic point of view, the genetic diversity of these genotypes seedlings was assessed using simple-sequence repeat markers (SSR). Morphologically, P. microcarpa species showed lower leaf area, height, and diameter compared to P. incana and mainly P. avium. Photosynthesis in seedlings decreased during drought stress, but this decrease was more in Avi-Ala 11 (5,500 µmol CO2 m-2 s-1) compared to Inc-Kho (10,760 µmol CO2 m-2 s-1) and Mic-Kor 3 (10,340 µmol CO2 m-2 s-1). Our results show that both P. microcarpa and P. incana species can be considered drought-resistant rootstock in cherries and a possible genetic source for drought breeders. The results of this research can also help to determine the relationship between phenotypic and genotypic data for the identification of molecular markers associated with drought tolerance.

کلیدواژه‌ها [English]

  • Cerasus subgenus
  • photosynthesis
  • Prunus
  • simple sequence repeats (SSR)‎
  1. Aranzana, M.J., García-Mas, J., Carbó, J., & Arús, P. (2002). Development and variability analysis of microsatellite markers in peach. Plant Breeding, 121, 87-92.
  2. Arji, I., Arzani, K., & Latifi, S. M. (2002). The effect of different amounts of irrigation on physical and growth reactions of young seedlings of `Zard’ cultivar. Journal of Soil and Water Sciences, 16 (1), 111-120. (In Farsi)
  3. Arzani, K. (1994). Horticultural and physiological aspects of vigor control in apricot (Prunus armeniaca ) under orchard and controlled environment conditions. Ph.D. Thesis. Department of Plant Science, Massey University. New Zealand.
  4. Arzani, K. (2017). The potential and limiting environmental conditions on fruit trees germplasm and yield of established orchards in Iran. First International Horticultural Science Conference of Iran (IrHC2017), September 4-7, Tarbiat Modares University (TMU), Tehran Iran, Abstracts Book, 110.
  5. Bogoslavsky, L., & Neumann, P.M. (1998). Rapid regulation by acid pH of cell wall adjustment and leaf growth in maize plants responding to reversal of water stress. Plant Physiology, 118, 701-709.
  6. Centritto, M. (2005). Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. Agriculture, Ecosystems & Environment, 106(2-3), 233-242.‏
  7. Čereković, N., Pagter, M., Kristensen, H. L., Pedersen, H. L., Brennan, R., & Petersen, K. K. (2013). Effects of drought stress during flowering of two pot-grown blackcurrants (Ribes nigrum) cultivars. Scientia Horticulturae, 162, 365-373.‏
  8. Cipriani, G., Lot, G., Huang, W. G., Marrazzo, M. T., Peterlunger, E., and Testolin, R. (1999). AC/GT and AG/CT microsatellite repeat in peach [Prunus persica (L) Batsch]: Isolation, characterization and cross-species amplification in Prunus. Theoretical and Applied Genetics, 99, 65-72.
  9. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M. J., Poizat, C., Zanetto, A., Arus, P. & Laigret, F. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium). Theoretical and Applied Genetics. 105, 127-138.
  10. Downey, S. L., & Iezzoni, A. F. (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. Journal of the American Society for Horticultural Science, 125, 76-80.
  11. Doyle, J. J., & Doyle, J. L. (1989). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry. Bull, 19, 11-15.
  12. Escobar-Gutiérrez, A. J., Zipperlin, B., Carbonne, F., Moing, A., & Gaudillére, J. P. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Functional Plant Biology, 25, 197-205.
  13. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., & Farooq, A. (2017). Crop production under drought and heat. Frontiers, 8, 1-16.
  14. Fattahi, B., Arzani, K., Souri, M., & Barzegar, M. (2020). Effect of cadmium and lead on morpho-physiological traits and photosynthesis of ‎sweet basil (Ocimum basilicum)‎', Iranian Journal of Horticultural Science, 50(4), 839-849. (In Farsi).
  15. Food and Agriculture Organization (FAO). (2020). (http://www.fao.org/faostat/en/#data/QC).
  16. Gadallah, M. A. A. (2000). Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. Arid Environment Journal, 44, 451-467.
  17. Ganji-Moghaddam, E., Mokhtarian, A., & Kiani, M. R. (2006). Investigation on genetic variation of sour cherry (Prunus cerasus) populations for selection of dwarf genotypes using morphological characters. Seed and Plant, 22 (4), 417-428. (In Farsi).
  18. García-Sánchez, F., Versluesrtsen, J. P., Gimeno, V., Botía, P., & Perez-Perez, J. G. (2007). Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiologiae Plantarum, 130, 532-542.
  19. Ghasemi M., Arzani, K., Yadollahi, A. & Hokmabadi, H. (2016). Leaf and root mineral concentrations of four pistachio seedling rootstocks under different irrigation regimes. Iranian Journal of Horticultural Science 46(4): 659-667 (In Farsi).
  20. Homayouni, A., Bouzari, N., & Abdousi, V. (2012). Genetic diversity of some Iranian sour cherry genotypes based on morphological and molecular markers. Seed and Plant Improvement Journal, 28-1 (2), 239-254. (In Farsi).
  21. Jalili, S., Arzani, K., Salazar, J.A., Martínez-García, P.J., Martínez-Gómez, P., Bouzari, N., Roozban, M.R., Ahmadi, N. & Prudencio, A.S. (2021). Transcriptional responses of wild cherries under drought stress and their molecular characterization by using Prunus SSR sequences. Acta Horticulturae 1307, 307-314.
  22. Jiménez, S., Dridi, J., Gutiérrez, D., Moret, D., Irigoyen, J. J., Moreno, M. A., & Gogorcena, Y. (2013). Physiological, biochemical, and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 33, 1061-1075.
  23. Khadivi-Khub, A., Zamani, Z., Fattahi, R., & Wünsch, A. (2014). Genetic variation in wild Prunus subgenus Cerasus germplasm from Iran characterized by nuclear and chloroplast SSR markers. Trees, 28(2), 471-485.‏
  24. Kloosterman, A. D., Budowle, B., & Daselaar, P. (1993). PCR- amplification, and detection of the human DIS80 VNTR Locus. Amplification conditions and application in forensic analysis. International Journal of Legal Medicine, 105, 257-264.
  25. Li, Y., Zhao, H., Duan, B., Korpelainen, H., & Li, C. (2011). Effect of drought and ABA on growth, photosynthesis, and antioxidant system of Cotinus coggygria seedlings under two different light conditions. Environmental and Experimental Botany, 71, 107-13.
  26. Ling, Q., Huang, W., & Jarvis, P. (2011). Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 107, 209-214.
  27. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616-620.
  28. Lopes, M. S., Sefc, K. M., Laimer, M., & Machado, A. D. C. (2002). Characterization of microsatellite loci in apricot. Molecular Ecology Notes, 2, 24-26.
  29. Martínez-García, P. J., Hartung, J., Pérez de los Cobos, F., Martínez-García, P., Jalili, S., Sánchez-Roldán, J. M., Rubio, M., Dicenta, F., & Martínez-Gómez, P. (2020). Temporal response to drought stress in several Prunus rootstocks and wild Species. Agronomy, 10, 1383
  30. Messina, R., Lain, O., Marrazzo, M. T., Cipriani, G., & Testolin, R. (2004). New set of microsatellite loci isolated in apricot. Molecular Ecology Notes, 4, 432-434.
  31. Mnejja, M., García-Mas, J., Howad, W., Badenes, M. L., & Arús, P. (2004). Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina) are highly polymorphic and transferable to peach and almond. Molecular Ecology Notes, 4, 163-166.
  32. Monakhova, O. F., & Chernyadev, I. I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Biochemistry and Microbiology. 38, 373–380.
  33. Mozaffarian,V. (2002). Studies on the flora of Iran, new species, and new records. Pakistan Journal of Botany, 34, 391-396.
  34. Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction. Proceedings of the National Academy of Sciences, USA, 76, 5269-5273.
  35. Rasouli, M., & Arzani, K. (2012). A study of total photosynthesis rate and growth pattern in nine Asian pear (Pyrus serotina Rhed) cultivars grown under Tehran environmental conditions. Iranian Journal of Horticultural Science, 42(4), 329-338. (In Farsi).
  36. Shahi-Gharahlar, A., Zamani, Z., Fatahi Moghaddam, M. R., & Bouzari, N. (2010). Assessment of morphological variation among some Iranian wild Cerasus sub-genus genotypes. Horticulture, Environment, and Biotechnology, 51, 308-318.
  37. Shalhevet, J. (1993). Plants under salt and water stress. Plant Adaptation to Environmental Stress, 1, 133-154.
  38. Stanys, V., Frercks, B., Siksnianiene, J.B., Stepulaitiene, I., Gelvonauskiene, D., Staniene, G., & Bobinas, C. (2012). Identification of sweet cherry (Prunus avium) cultivars using AFLP and SSR markers. Zemdirbyste, 99, 437-444.
  39. Testolin, R., Marrazzo, T., Cipriani, G., Quarta, R., Verde, I., Dettori, M. T., & Sansavini, S. (2000). Microsatellite DNA in peach (Prunus persica Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43, 512-520.
  40. Tomás, M., Medrano, H., Escalona, J. M., Martorell, S., Pou, A., Ribas-Carbó, M., & Flexas, J. (2014). Variability of water use efficiency in grapevines. Environmental and Experimental Botany, 103, 148-157.
  41. Wang, J., Zheng, R., Bai, S., Gao, X., Liu, M., & Yan, W. (2015). Mongolian almond (Prunus mongolica Maxim): The morpho-physiological, biochemical, and transcriptomic response to drought stress. Plos One, 10, e012442.
  42. Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38, 171-186.
  43. Zamani, Z., Shahi-Gharahlar, A., Fatahi, R., & Bouzari, N. (2012). Genetic relatedness among some wild cherry (Prunus subgenus Cerasus) genotypes native to Iran assayed by morphological traits and random amplified polymorphic DNA analysis. Plant Systematics and Evolution, 298(2), 499-509.‏