برآورد اجزای ژنتیکی و وراثت‌پذیری عملکرد و اجزای عملکرد گوجه‌فرنگی از طریق تجزیه میانگین ‏نسل‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 استاد، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

گوجه­فرنگی به­عنوان یک سبزی میوه­ای جذاب به­شمار می­رود و مطالعات ژنتیکی وسیعی روی صفات زراعی گوجه­فرنگی به­منظور افزایش کارایی برنامه‌های به­نژادی این گیاه صورت گرفته است. عملکرد یک صفت مهم از نظر اقتصادی به شمار می­رود و در همه برنامه‌های به­نژادی گوجه‌فرنگی گنجانده می‌شود. انتخاب یک روش به­نژادی مؤثر نیازمند اطلاعات جامع از سیستم ژنتیکی کنترل کننده صفت موردنظر است. هدف از این تحقیق، تعیین پارامتر­های ژنتیکی عملکرد و اجزای عملکرد با استفاده از روش­های تجزیه میانگین و واریانس نسل­ها بود. تجزیه میانگین و واریانس نسل­ها با استفاده از شش نسل پایه (P1، P2، F1، F2، BC1 و BC2) حاصل از تلاقی لاین­های گوجه­فرنگی M110 و P110 انجام شد. لاین P110 (زرد و گلابی شکل) داری عادت رشد نامحدود و لاین  M110(مینیاتور) دارای عادت رشد محدود است. نتایج تجزیه میانگین و واریانس نسل­ها نشان داد که مدل ژنتیکی ساده افزایشی و غالبیت توجیه کننده تغییرات تمام صفات مورد مطالعه به جز صفت میانگین وزن میوه بود. همچنین، برای صفات مورد مطالعه آثار غیرافزایشی بیشتر از اثر افزایشی برآورد شد. وراثت­پذیری عمومی برای تمام صفات مورد مطالعه به جز صفت میانگین وزن میوه ، بیشتر از متوسط (بالای 50 درصد) بود، اما وراثت­پذیری خصوصی برای صفات مورد مطالعه کمتر از 50 درصد برآورد شد. بنابرین گزینش مستقیم برای صفات مورد مطالعه مناسب نبوده و گزینش دوره­ای برای افزایش شانس ترکیب شدن ژن­های موثر در کنترل این صفات توصیه می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

‎ Estimation of genetic‎ parameters and heritability for yield and yield components in ‎tomato through generation mean analysis

نویسندگان [English]

  • Meysam Safaee 1
  • Jamal-Ali Olfati 2
  • Yousef Hamidoghli 2
  • Babak Rabiei 3
1 Former Ph.D. Student,, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran‎
2 Associate Professor,, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran‎
3 Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran‎
چکیده [English]

Tomato is an interesting vegetable crop and numerous genetic studies have been conducted to increase the efficiency of tomato breeding strategies. Yield is an economically important trait and therefore improving yield is the main focus in breeding projects. The selecting efficient breeding strategy needs comprehensive information about the genetic controlling of interested traits. The aim of this study was to determine genetic parameters for yield and yield component tomato through generation mean analysis. Generation mean analysis was conducted using six basic generations (P1, P2, F1, F2, BC1, BC2) derived from a cross between two lines (M110 and P110) of tomato. M110 and P110 have a determinate and indeterminate growth habit respectively. Results showed that a simple additive dominance model was adequate to explain variability among traits of interest. Non-additive gene effects were predominant for all characters in this study. Broad sense heritability was calculated at over 50% for all traits while narrow sense heritability was less than 50%. Therefore, direct selection for these traits might not be useful, and recurrent selection procedures could increase the frequency of favorable alleles in breeding populations to enable the selection and development of genotypes with superior plants.

کلیدواژه‌ها [English]

  • Additive effect
  • complementary epistasis
  • dominance effect
  • fruit weight
  1. Amin, I. (2013). Genetics behavior of some agronomic traits in two durum wheat crosses under heat stress. Alexandria Journal of Agricultural Research, 58(1), 53-66.
  2. Bhatt, R., Biswas, V., & Kumar, N. (2001). Heterosis, combining ability and genetics for vitamin C, total soluble solids and yield in tomato (Lycopersicon esculentum) at 1700 m altitude. The Journal of Agricultural Science, 137(1), 71-75.
  3. Chandrasekhar, P., & Rao, M. P. (1989). Studies on combining ability of certain characters in tomato. South India Horticulture, 37, 10-12.
  4. Checa, O., Ceballos, H., & Blair, M. W. (2006). Generation means analysis of climbing ability in common bean (Phaseolus vulgaris). Journal of Heredity, 97(5), 456-465.
  5. Chi, N. N. (2017). Genetic analysis and heritability estimates for heat-tolerance traits in tomato (Solanum lycopersicum). Master's thesis, Texas A & M University.USA.Available electronically from https: / /hdl .handle .net /1969 .1 /173088.
  6. Christakis, P., &Fasoulas, A. (2001). The recovery of recombinant inbreds outyielding the hybrid in tomato.The Journal of Agricultural Science, 137(2), 179-183.
  7. Comstock, R. E., Robinson, H. F., & Harvey, P. H. (1949). A breeding procedure designed to make maximum use of both general and specific combining ability 1. Agronomy Journal, 41(8), 360-367.
  8. Cukadar‐Olmedo, B., & Miller, J. F. (1997). Inheritance of the stay-green trait in sunflowers. Crop Science, 37(1), 150-153.
  9. Dhaliwal, M., & Nandpuri, K. (1988). Genetics of yield and its components in tomato. Annals of Biology, 4, 75-80.
  10. Dvojković, K., Drezner, G., &Novoselović, D. (2010). Estimation of some genetic parameters through generation mean analysis in two winter wheat crosses. Periodicumbiologorum, 112(3), 247-251.
  11. EbenzerBabuRajan, R., Praveen Sampath Kumar, C., Joshi, J.L., & Muraleedharan, A. (2019). Generation means analysis for yield and component traits in tomatoes (Lycopersicon esculentum). Plant Archives. 19, 448-451.
  12. Foolad, M. (1996). Genetic analysis of salt tolerance during vegetative growth in tomato, Lycopersicon esculentum Plant Breeding, 115(4), 245-250.
  13. Foolad, M. R., & Lin, G. (2001). Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicone sculentum Euphytica, 122(1), 105-111.
  14. Ghosh, K., Islam, A., Mian, M., & Hossain, M. (2010). Variability and character association in F2 segregating population of different commercial hybrids of tomato (Solanum lycopersicum). Journal of Applied Sciences and Environmental Management, 14(2), 1-12.
  15. Hanson, P. M., Chen, J.t., & Kuo, G. (2002). Gene action and heritability of high-temperature fruit set in tomato line CL5915. Hort Science, 37(1), 172-175.
  16. Hayman, B. (1958). The separation of epistasis from additive and dominance variation in generation means. Heredity, 12, 371-391.
  17. Hayman, B. (1960). The separation of epistatic from additive and dominance variation in generation means. II. Genetica, 31, 133-146.
  18. Henareh, M., Abdollahi mandoulakani, Babak, & Dursun, A. (2018). Association analysis of morphological traits in tomatoes using ISSR markers. Iranian Journal of Horticultural Sciences, 49(1), 171-181.
  19. Heuvelink, E. (2018). Tomatoes (Vol. 27): CABI.
  20. Iqbal, M. Z., & Nadeem, M. A. (2003). Generation means analysis for seed cotton yield and number of sympodial branches per plant in cotton (Gossypium hirsutum). Asian Journal of Plant Sciences, 2(4), 395-399.
  21. Jinks, J., & Jones, R. M. (1958). Estimation of the components of heterosis. Genetics, 43(2), 223.
  22. Jones Jr, J. B. (2016). Hydroponics: a practical guide for the soilless grower: CRC press.
  23. Kearsey, M. J., &Pooni, H. S. (2004). The Genetical Analysis of Quantitative Traits. Chapman and Hall, London.
  24. Mather, K. (1949). Biometrical genetics (Methuen and Co. Ltd., London), 162.
  25. Mather, K., &Jinks, J. (1971). Biometrical Genetics.2nd edn Chapman and Hall Ltd. New Fetter Lane, London,
  26. Mather, K., & Jinks, J. (1982). Introduction to Biometrical Genetics.3rd editoion. In: Chapman and Hall Ltd., London.
  27. Nezami, S., Nemati, S.H., Aroiee, H., & Kafi, M. 2022. Half diallel analysis of related traits to yield and fruit quality in tomato lines. Iranian Journal of Horticultural Sciences, 52(4), 1011-1025.
  28. Pooni, H., & Treharne, A. (1994). The role of epistasis and background genotype in the expression of heterosis. Heredity, 72(6), 628-635.
  29. Saleem, M. Y., Asghar, M., Haq, M. A., Rafique, T., Kamran, A., & Khan, A. A. (2009). Genetic analysis to identify suitable parents for hybrid seed production in tomato (Lycopersicon esculentum). Pakistan Journal of Botany, 41(3), 1107-1116.
  30. Sharmila, V., Ganesh, S. K., & Gunasekaran, M. (2007). Generation mean analysis for quantitative traits in sesame (Sesamum indicum) crosses. Genetics and Molecular Biology, 30(1), 80-84.
  31. Singh, R., & Chaudhary, B. (1985). Biometrical methods in quantitative genetic analysis. Kalyani Publishers. Ludhiana, India.
  32. Singh, R., & Singh, S. (1985). Detection and estimation of components of genetic variation for some metric traits in tomato (Lycopersicon esculentum Mill). Theoretical and Applied Genetics, 70(1), 80-84.
  33. Singh, U., Tanki, I., & Singh, R. (1988). Studies on order effect and epistatic components for yield in double-cross hybrids of tomato. Genetica Iberica, 40(3-4), 147-155.
  34. Sonone, A., Yadav, M., & Thombre, M. (1986). Combining ability for yield and its components in tomato. Journal of Maharashtra Agricultural Universities (India), 11, 288-290.
  35. Van Der Veen, J. (1959). Tests of non-allelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines. Genetica, 30(1), 201-232.
  36. Zdravkovic, J., Markovic, Z., Zdravkovic, M., Sretenovic-Rajicic, T., & Kraljevic-Balali, M. (1998). Gene effects on the number of fruits per flower branch in tomato (Lycopersicum esculentum). VI International Symposium on Processing Tomato & Workshop on Irrigation & Fertigation of Processing Tomato. 487, 361-366.
  37. Zdravkovic, J., Pavlovic, N., Girek, Z., Brdar-Jokanovic, M., Savic, D., Zdravkovic, M., & Cvikic, D. (2011). Generation means analysis of yield components and yield in tomato (Lycopersicum esculentum). Pakistan Journal of Botany, 43(3), 1575-1580.