تاثیر دو گونه قارچ مایکوریزا بر جذب یونی و ویژگی‌های مورفوفیزیولوژیکی گلوکسینا ‏‏(‏Sinningia speciosa (Lodd.) Hiern.‎‏)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

2 استادیار، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

این تحقیق با هدف بررسی اثر همزیستی مایکوریزایی بر جذب عناصر و شاخص­های مورفولوژی و فیزیولوژی گلوکسینیا انجام شد. بستر گیاهان حاوی صفر (شاهد)، 8 و 16 درصد حجمی از Glomus hoei و Glomus intraradices (GH8، GI8، GH16، GI16) بودند. در پایان آزمایش، سطح برگ، تعداد برگ، قطر گل، تعداد گل، وزن تر و خشک اندام هوایی، غده و ریشه، طول ریشه، حجم ریشه، میزان کلروفیل، کاروتنوئید و عناصر N، P، K، Mn، Fe و Mg برگ اندازه­گیری شدند. تفاوت معنی­داری بین تیمارها در تعداد و قطر گل، وزن تر اندام هوایی، غده و ریشه، مقدار کلروفیل b و کاروتنوئید مشاهده نشد. تیمار GI16 بیشترین میزان عناصر N و Mn و کمترین میزان Mg و تیمار GH16 بیشترین میزان P و K را نشان داد. بیشترین و کمترین جذب Fe به­ترتیب در GH8 و GI8 مشاهده شد. تیمار شاهد کمترین میزان N، P، K و Mn و بیشترین میزان Mg را نشان داد، ولی تیمارهای دارای میکوریزا کمترین مقدار Mg و در نتیجه کمترین میزان کلروفیل a و کلروفیل کل داشتند. گیاهان شاهد در شاخص­های سطح برگ، تعداد برگ، طول ریشه، حجم ریشه و وزن خشک تفاوت معنی­دار و عملکرد بهتری نسبت به تیمارهای مایکوریزایی داشتند، بنابراین به نظر می­رسد که G. hoei و G. intraradices نمی توانند با گلوکسینیا همزیستی موفقیت­آمیزی تشکیل دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of two mycorrhizal fungi species on ionic competition and ‎morphophysiological characteristics of gloxinia (Sinningia speciosa (Lodd.) Hiern.)‎

نویسندگان [English]

  • Mohammad Moazzeni 1
  • Saeed Reezi 2
  • Masoud Ghasemi Ghehsareh 2
1 M. Sc., Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
2 Assistant Professor, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
چکیده [English]

This research was established to evaluate the effect of mycorrhizal symbiosis on nutritional elements absorption, morphological and physiological traits of gloxinia. Plants substrate was containing of zero (control), 8 and 16 V/V of Glomus hoei and Glomus intraradices (GI16, GH16, GI8, GH8). At the end of the experiment, leaf area, number of leaves, flower diameter, number of flowers, fresh and dry weight, chlorophyll and carotenoid content and amounts of N, P, K, Mn, Fe and Mg were measured. No significantly differences were observed between treatments in flower number and diameter, fresh weight, chlorophyll b and carotenoid contents. GI16 treatment had the highest amounts of N and Mn and the lowest amounts of Mg, and GH16 exhibited the highest amounts of P and K content. The highest and lowest Fe was absorbed tin GH8 and GI8, respectively. The control treatment showed the lowest amounts of N, P, K and Mn, however it had the highest Mg, but mycorrhizal treatments had the lowest Mg and thereby the lowest contents of chlorophyll a and total chlorophyll. Control plants showed a better growth and significantly differences than mycorrhizal treatments in traits such as leaf area, number of leaves, root length, root volume and dry weight, therefore, it can be concluded that G. hoei and G. intraradices cannot form a successful symbiosis.

کلیدواژه‌ها [English]

  • Greenhouse
  • magnesium
  • phosphorus
  • symbiosis
  • synergism
  1. Asmah, A. E. (1995). Effect of phosphorous source and rate of application on VAM fungal infection and growth of maize (Zea mays). Mycorrhiza, 5, 223-228.
  2. Bansal, S. & Kapoor, K. K. (2000). Vermicomposting of crop residues and catch drug with Eisenia foetida. Bioresource Technology, 73, 95-98.
  3. Baslam, M., Garmendia, I. & Goicoechea, N. (2013). The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Scientia Horticulturae, 164, 145-154.
  4. Baum, C., El-Tohamy, W. & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scienta Horticulturae, 187, 131-141.
  5. Beale, S. I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Research, 60, 43-73.
  6. Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R. & Jackson, L. E. (2016). Effects of arbuscular mycorrhiza on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of Total Environment, 566, 1223-1234.
  7. Cardoso, I. M. & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 116, 72-84.
  8. Clark, R. B., Zobel, R. W. & Zeto, S. K. (1999). Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza, 9, 167-176.
  9. Chatzistathis, T., Orfanoudakis, M., Alifragis, D. & Therios, I. (2013). Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants. Scientia Agricola, 70, 185-194.
  10. Dole, J. M. & Wilkins, H. F. (2005). Floriculture: Principles and species (2nd ed.). Pearson/Prentice Hall. New Jersey.
  11. Ericsson, T. & Kähr, M. (1995). Growth and nutrition of birch seedlings at varied relative addition rates of magnesium. Tree Physiology, 15, 85-93
  12. Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrihizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263-1280.
  13. Farrokhvand, I., Reezi, S., Barzegar, R. & Fattahi, M. (2020). Effect of symbiosis of several mycorrhiza arbuscular fungi species on some quality and physiological indices of potted lisianthus flower (Eustoma grandiflorum ‘Matador Blue’). Iranian Journal of Horticultural Science, 50 (4), 815-824. (In Farsi).
  14. Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E. & Khodaei-Joghan, A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106-114
  15. Giovannetti, M. & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
  16. Giri, B., Kapoor, R. & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbial Ecology, 54, 753-760.
  17. Goussous, S. J. & Mohammad, M. J. (2009). Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. International Journal of Agriculture and Biology, 11 (4), 463-467.
  18. Grace, E. J., Cotsaftis, O., Tester, M., Smith, F. A. & Smith, S. E. (2009). Arbuscular mycorrhizal inhibition of growth in barley can not be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 181, 938-49. 
  19. Guhr, A., Borken, W., Spohn, M. & Matzner, E. (2015). Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proceedings of the National Academy of Sciences of the United States of America, 112, 14647-14651.
  20. Hermans, C. & Verbruggen, N. (2005). Physiological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 56 (418), 2153-2161.
  21. Hermans, H., Johnson, G. N., Strasser, R. J. & Verbruggen, N. (2004). Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta, 220, 344-355.
  22. Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297-299.
  23. James, J. J., Tiller, R. L. & Richards, J. H. (2005). Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology, 93, 113-126.
  24. Janowska, B., Rybus-Zając, M., Horojdko, M., Andrzejak, R. & Siejak, D. (2016). The effect of mycorrhization on the growth, flowering, content of chloroplast pigments, saccharides and protein in the leaves of Sinningia Speciosa (Lodd.) Hiern. Acta Agrophysica, 23 (2), 213–223.
  25. Johnson, N. C., Graham J. H. & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135, 575-86.
  26. Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U. & Bothe, H. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718-728.
  27. Keymer, A. & Gutjahr, C. (2018). Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion Plant Biology, 44, 137-144.
  28. Kothari, S. K., Marschner, H. & Romheld, V. (1990). Direct and indirect effects of VA mycorrhizal fungi and rhizosphere micro-organisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytologist, 116, 637-645.
  29. Lanfranco, L., Fiorilli, V. & Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031-1046.
  30. Lehmann, A., Barto, E. K., Powell, J. R. & Rillig, M. C. (2012). Mycorrhizal responsiveness trends in annual crop plants and their wild relatives – a meta-analysis on studies from 1981 to 2010. Plant and Soil, 355, 231-250.
  31. Lichtenthaler, H. K. & Welburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592.
  32. Liu, A., Hamal, C., Elmi, A., Costa, C., Ma, B. & Smith, D. L. (2002). Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Canadian Journal of Soil Science, 82 (3), 271-278.
  33. Liu, A. R., Chen, S. C., Chang, R., Liu, D. L., Chen, H. R., Ahammed, G. J., Lin, X. & He, C. (2014). Arbuscular mycorrhiza improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. Journal of Plant Research, 127, 775-785.
  34. López, M. F., Dietz, S., Grunze, N., Bloschies, J., Weiss, M. & Nehls, U. (2008). The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. New Phytologist, 180, 365-378.
  35. Marchner, H. & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89-102.35.
  36. Martín-Robles, N., Lehmann, A., Seco, E., Aroca, R., Rillig, M. C. & Milla, R. (2018). Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytologist, 218, 322-334.36.
  37. Miransari, M., Bahrami, H.A., Rejali, F. & Malakouti, M. J. (2009). Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum) Growth. Soil Biology and Biochemistry, 40, 1197-1206.
  38. Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. 
  39. Olsson, P. A., Hammer, E. C., Pallon, J., van Aarle, I. M. & Wallander, H. (2011). Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biology, 115, 643-648.
  40. Olsson, P. A., Hammer, E. C., Wallander, H. & Pallon, J. (2008). Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Applied and Environmental Microbiology, 74, 4144-4148.
  41. Ortas, I. & Akpinar, C. (2006). Response of kidney bean to arbuscular mycorrhizal inoculation and mycorrhizal dependency in P and Zn deficient soils. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science, 56, 101-109.
  42. Pallon, J., Wallander, H., Hammer, E., Arteaga Marrero, N., Auzelyte, V., Elfman, M., Kristiansson, P., Nilsson, C., Olsson, PA. & Wegdén, M. (2007). Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nuclear Instruments and Methods in Physics Research Section B, 260, 149-152.
  43. Perner, H., Schwarz, D., Bruns, C., Mäder, P. & George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17, 469-474.
  44. Phillips, D. M. & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.
  45. Ponton, F., Piché. Y., Parent, S. & Caron. M. (1990). The use of vesicular arbuscular mycorrhizal in Boston fern production: I. Effects of peat-based mixes. HortScience, 25, 183-189.
  46. Raju, P. S., Clark, R. B., Ellis, J. R. & Maranville, J. W. (1990). Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant and Soil, 121, 165-170.
  47. Rich, M. K., Nouri, E., Courty, P. E. & Reinhardt, D. (2017). Diet of arbuscular mycorrhizal fungi: bread and butter?. Trends Plant Science, 22, 652-660.
  48. Rooney, D. C., Prosser, J. I., Bending, G. D., Baggs, E. M., Killham, K. & Hodge, A. (2011). Effect of arbuscular mycorrhizal colonization on the growth and phosphorus nutrition of Populus euramericana Ghoy. Biomass and Bioenergy, 35 (11), 4605-4612.
  49. Roth, R. & Paszkowski, U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 39, 50-56.
  50. Rozpadek, P., Rapala-Kozik, M., Wezowicz, K., Grandin, A., Karlsson, S. & Wazny, R. (2016). Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology and Biochemistry, 107, 264-272.
  51. Sawers, R. J., Svane, S. F., Quan, C., Grønlund, M., Wozniak, B. & Gebreselassie, M. N. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 214, 632-643.
  52. Sawers, R. J. H., Ramírez-Flores, M. R., Olalde-Portugal, V. & Paszkowski, U. (2018). The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytologist, 220, 1135-1140.
  53. Shahbazi, Z., Salehi, A., Movahedi Dehnavi, M., Farajee, H. (2018). The effect of organic fertilizer and mycorrhizal fungus on morphological characteristics, shoot biomass and mucilage of borage (Borago officinalis). Iranian Journal of Horticultural Science, 50 (3), 561-570. (In Farsi).
  54. Smith, S. E. & Gianinazzi-Pearson, V. (1988). Physiological interactions between symbionts in AM plants. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 221-244.
  55. Stavros, D. V., Liz, J. S. & Robin, S. (2011). Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant and Soil, 340, 481-490.
  56. Subramanian, K., Santhanakrishnan, P. & Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107, 245-253.
  57. Terry, N. & Ulrich, A. (1974). Effects of magnesium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiology, 54, 379-381.
  58. Tewari, R. K, Kumar, P. & Sharma, P. N. (2006). Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Scientia Horticulturae, 108, 7-14.
  59. Wang, H., Parent, S., Gosselin, A. & Desjardins, Y. (1993). Vesicular-arbuscular mycorrhizal peat-based substrates enhance symbiosis establishment and growth of three micro propagated species. Journal of American Society of Horticultural Science, 118 (6), 896-901.
  60. Watanabe, F. S. & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO, extracts from soil. Soil Science Society of American Proceedings, 29, 677-678.
  61. Worrich, A., Stryhanyuk, H., Musat, N., Konig, S., Banitz, T. & Centler, F. (2017). Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nature Communications, 8, 15472.
  62. Wu, Q. S. & Xia, R. X. (2006). Arbascular mycorrhiza fungi influence growth, osmotic adjustment and photosynthesis of citrus under well watered and water stress conditions. Journal of Plant Production, 8, 47-55.
  63. Zhu, X. Q., Wang, C. Y., Chen, H. & Tang, M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 52, 247-252.