نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 استاد، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

استات به‌عنوان یکی از مهمترین حدواسط‌ها در متابولیسم‌های سلولی عمل می‌کند. جهت ارزیابی نقش منابع استات در تنش شوری، نشاهای توت‌فرنگی با منابع استات شامل آمونیوم استات و استیک اسید (1 میلی‌مولار) و آمونیوم کربنات (5/0 میلی‌مولار) به‌صورت جداگانه و همراه با تنش شوری (40 میلی‌مولار کلرید سدیم) استفاده شد. تنش شوری باعث کاهش زیست‌توده در نشاهای توت‌فرنگی شد، ولی کمترین تغییر در میزان زیست‌توده در تیمارهای استات بود. بیشترین محتوای نسبی آب برگ نیز در تیمارهای استیک اسید و شاهد در شرایط بدون تنش شوری بود. شوری باعث تغییر در میزان ویتامین ث میوه شد، به‌ گونه‌ای که بیشترین میزان آن در تیمار استیک اسید و کمترین در تیمار تنش شوری به‌تنهایی (به‌ترتیب، 33/86 و 50/42 میلی-گرم در 100 گرم وزن تر) بود. بیشترین میزان عملکرد تک بوته در تیمار استیک اسید و کمترین آن در تیمارهای آمونیوم کربنات و تنش شوری به‌ تنهایی بود. نسبت پتاسیم به سدیم در گیاهان تیمار شده با منابع مختلف استات، در مقایسه با دیگر تیمارهای بدون کاربرد استات بیشتر بود. در مجموع استات به ویژه تیمار استیک اسید در غلظت 1 میلی­مولار می‌تواند جهت بهبود تحمل به تنش شوری عمل کند و از سوی دیگر میزان کاهش کمتر عملکرد در شرایط تنش از دیگر ویژگی‌های مثبت این تیمار بود. از این‌رو می‌تواند به‌عنوان یکی از ارزانترین و ساده‌ترین ترکیبات در جهت افزایش تحمل به تنش و به‌ویژه تنش شوری در توت‌فرنگی مطرح شود.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of acetate on improving salinity stress tolerance of strawberry cv. ‎‎‘Paros’‎

نویسندگان [English]

  • Zahra Mirfattahi 1
  • Saied Eshghi 2

1 Ph.D‎. Candidate, Faculty of Agriculture, Shiraz University, Shiraz, Iran‎

2 Professor, Faculty of Agriculture, Shiraz University, Shiraz, Iran‎

چکیده [English]

Acetate acts as one of the most important intermediates in cellular metabolism. To evaluate the role of acetate sources in salinity stress, strawberry transplants treated with different acetate sources including ammonium acetate and acetic acid (1 mM) and ammonium carbonate (0.5 mM) in two saline stress (40 mM NaCl) and no- stress conditions. Salinity stress reduced biomass in strawberry, but the least change in biomass was observed in acetate treatments. The highest leaf water content was observed in acetic acid and control treatments under salinity stress. Salinity caused a change in vitamin C content of the fruit, and the highest contents were observed in acetic acid treatment and the lowest salinity stress alone (86.33 and 42.50 mg/100 g FW, respectively). The highest yield per plant was in acetic acid treatment and the lowest in ammonium carbonate and salinity treatments alone. Potassium to sodium ratios was higher in plants treated different sources of acetate compared to other treatments without acetate application Overall, acetate, especially acetic acid treatment at 1 mM, can improve tolerance to salinity stress conditions in plants. On the other hand, the lower reduction of yield in salinity stress conditions is another positive feature of this treatment. Therefore, it can be considered as one of the cheapest and simplest compounds to increase stress tolerance, especially in salinity stress conditions in strawberries.

کلیدواژه‌ها [English]

  • Acetic acid
  • Ammonium acetate
  • ammonium carbonate
  • potassium to sodium‎
  1. Albuquerque, N., Egea, J., Burgos, L., Martinez‐Romero, D., Valero, D., & Serrano, M. (2006). The influence of polyamines on apricot ovary development and fruit set. Annals of Applied Biology, 149(1), 27-33.
  2. Allakhverdiev, S. I., Kinoshita, M., Inaba, M., Suzuki, I., & Murata, N. (2001). Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in synechococcusPlant Physiology, 125(4), 1842-1853.
  3. Ashraf, M. P. J. C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16.
  4. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221(6), 731.
  5. Azizpour, K., Shakiba, M. R., Sima, N. K. K., Alyari, H., Mogaddam, M., Esfandiari, E., & Pessarakli, M. (2010). Physiological response of spring durum wheat genotypes to salinity. Journal of Plant Nutrition; 33(6), 859-873.
  6. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany; 91(2), 179-194.
  7. Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochemistry and Biophysics Acta; 1465, 140-151.
  8. Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agricultural and Food Chemistry, 54(5), 1680-1686.
  9. Caulet, R. P., Gradinariu, G., Iurea, D., & Morariu, A. (2014). Influence of furostanol glycosides treatments on strawberry (Fragaria× ananassa) growth and photosynthetic characteristics under drought condition. Scientia Horticulturae, 169, 179-188.
  10. Chapman, J. A. (1961). Morphological and chemical studies of collagen formation: I. The fine structure of guinea pig granulomata. The Journal of Cell Biology, 9(3), 639-651.
  11. Chernane, H., Latique, S., Mansori, M., & El Kaoua, M. (2015). Salt stress tolerance and antioxidative mechanisms in wheat plants (Triticum durum) by seaweed extracts application. Journal of Agriculture and Veterinary Sciences, 8(1), 36-44.
  12. Cramer, G. R. (2002). Sodium-calcium interactions under salinity stress (Ed), In salinity: environment-plants-molecules (pp. 205-227). Springer Science.
  13. Eshghi, S., Moharami, S., & Jamali, B. (2017). Effect of salicylic acid on growth, yield and fruit quality of strawberry cv. ‘Paros’ under salinity conditions. Journal of Science and Technology of Greenhouse Culture Soilless Culture Research Center, 7(4), 163-174. (In Farsi).
  14. Evans, L. T. (2005). Is crop improvement still needed? Journal of Crop Improvement, 14(1-2), 1-7.
  15. FAOSTAT (2010), http://faostat.fao.org/
  16. Farooq, S., & Azam, F. (2006). The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. Journal of Plant Physiology;163(6), 629-637.
  17. Fatemy, L.S., Tabatabaei, S.J, & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticulture Science, 23(1), 88-95. (In Farsi).
  18. Fernandez-Ballester, G., Garica-Sanchez, F., Cerda, , & Martinezm, V. (2003) Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. Tree Physiology, 23, 265-271.
  19. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1-18.‏
  20. Halliwell, B., & Gutteridge, J. M. (1999). Oxygen is a toxic gas: an introduction to oxygen toxicity and reactive oxygen species. Free Radicals in Biology and Medicine; 3: 1-35.
  21. Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages (pp. 25-87). In: Ecophysiology and responses of plants under salt stress (eds.). Ahmad, P., Prasad, M. N. V. and Azooz, M.M. New York, Springer.
  22. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil (2nd edit). Circular. California Agricultural Experiment Station.
  23. Hooks, M. A., Turner, J. E., Murphy, E. C., & Graham, I. A. (2004). Acetate non-utilizing mutants of Arabidopsis: evidence that organic acids influence carbohydrate perception in germinating seedlings. Molecular Genetics and Genomics, 271(3), 249-256.
  24. Jackson, M. L. (1967). Soil chemical analysis prentice. Hall of India Private Limited.
  25. Jamali, B., Eshghi, S., & Kholdebarin, B. (2014). Response of strawberry ‘Selva’ plants on foliar application of sodium nitroprusside (nitric oxide donor) under saline conditions. Journal of Horticultural Research, 22(2), 139-150.
  26. Jamalian, S. (2019). Effects of jasmonic acid and abscisic acid on metabolism of strawberry under NaCl stress. Iranian Journal of Horticultural Science, 50(3), 595-607. (In Farsi).
  27. Karlidag, H., Yildirim, E., & Turan, T. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187.
  28. Khan, M. A., Ungar, I. A., & Showalters, A. M. (2000). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii Stocksii. Annals of Botany, 85: 225-232.
  29. Khayyat, M., Tehranifar, A., Akbarian, A., Shayestehnia, S., & Khabari, S. (2009). Effects of calcium forms on electrolyte leakage, total nitrogen, yield and biomass production by strawberry plants under NaCl salinity. Journal of Central European Agriculture, 10(3), 297-302.
  30. Kim, J. M., To, T. K., Matsui, A., Tanoi, K., Kobayashi, N. I., Matsuda, F., & Bashir, K. (2017). Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 3(7), 17097.
  31. Kindle, K. L. (1987). Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Molecular Biology, 9(6), 547-563.
  32. Koyro, H. W., Geissler, N., Seenivasan, R., & Huchzermeyer, B. (2016). In handbook of plant and crop stress (Ed.), Plant stress physiology: physiological and biochemical strategies allowing plants/crops to thrive under ionic stress. (pp. 1047-1089). CRC Press.
  33. Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of the Association of Official Agricultural Chemists, 88(5), 1269-1278.
  34. Levitt, J. (1980). Responses of plants to environmental stresses (2th ed.). Academic Press.
  35. Marschner, H. )1995(. Mineral nutrition of higher plants (2th Ed.). Academic Press.
  36. Mata, C.G., & Lamattina, L. (2001): Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Journal of Plant Physiology, 126, 1196-1204.
  37. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  38. Munns, R. (2011). Plant adaptations to salt and water stress: differences and commonalities. InAdvances in Botanical Research, 57, 1-32.
  39. Orsini, F., Alnayef, M., Bona, S., Maggio, A., & Gianquinto, G. (2012). Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany, 81, 1-10.
  40. Pang, C. H., & Wang, B. S. (2008). In Progress in botany (Ed.), Oxidative stress and salt tolerance in plants. (pp. 231-245). Springer Science.
  41. Reyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., & Ribera-Fonseca, A. (2016). Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits. Molecules21(6), 567.
  42. Roussos, P.A., Sefferou, V., Denaxa, N.K., Tsantili, E., & Stathis, V. (2011). Apricot (Prunus armeniaca) fruit quality attributes and phytochemicals under different crop load. Scientia Horticulturae, 129, 472-478.
  43. Saadati, S., & Moallemi, N. (2011). A study of the zinc foliar application on growth and yield of Strawberry plant under saline conditions. Iranian Journal of Horticultural Science, 42(3), 267-275. (In Farsi).
  44. Saeedi, M., Shirzad, H., Norouzi, P. and Ghasemi, G. (2022). Interaction of sodium-nitroprusside and nano-potassium spraying on physicochemical properties and antioxidant capacity of Strawberry fruit (Fragaria × ananssa Cv. Camarosa). Iranian Journal of Horticultural Science, 52(4), 835-850. (In Farsi).
  45. Saied, A. S., Keutgen, A. J., & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Scientia Horticulturae, 103(3), 289-303.
  46. Santos, C. V. )2004(. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae; 103(1), 93-99.
  47. Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany, 97(5), 731-738
  48. Schwarz, M. (2012). Soilless culture management (24th). Springer Science & Business Media.
  49. Sheen, J. (1990). Metabolic repression of transcription in higher plants. The Plant Cell, 2(10), 1027-1038.
  50. Stuciffe, J., & Baker, D.A. (1981). Plants and mineral salts. Southampton: Edward Arnold Publisher.
  51. Sun, Y., Niu, G., Wallace, R., Masabni, J., & Gu, M. (2015). Relative salt tolerance of seven strawberry cultivars. Horticulturae, 1(1), 27-43.
  52. Wahome, P. K., Jesch, H. H., & Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose root stocks: Rosa chinensis major and rubiginosa. Scientia Horticulture, 87, 207-216.