نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه زنجان، کد پستی 45371-38791، زنجان، ایران

2 دانشگاه زنجان

3 دانشیار، دانشکده کشاورزی، دانشگاه زنجان، کد پستی 45371-38791، زنجان، ایران

4 دانشیار، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

5 استادیار، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

اثر باکتری باسیلوس سوبتیلیس با غلظت­های صفر و cfu/ml 102، 105، 106، 108 روی دو اکوتیپ زعفران زراعی (نطنز، زنجان) طی سال های زراعی 1397 - 1398 در قالب طرح پایه بلوک­های کامل تصادفی به صورت فاکتوریل با سه تکرار مورد بررسی قرار گرفت. تعداد برگ در هر بنه، متوسط طول برگ ها، گل ها، گلبرگ ها و کاسبرگ ها، وزن تر و وزن خشک کلاله، عملکرد تر و خشک گل، تعداد گل در هر کرت، میزان فنل و آنتوسیانین گلبرگ و میزان نیتروژن، فسفر و پتاسیم اندازه­گیری شد. کلیه صفات مورفولوژیک به طور معنی­داری تحت تاثیر کاربرد باکتری قرار گرفتند. بیشترین مقدار وزن تر و خشک کلاله در هر بوته در غلظت cfu/ml108 (به ترتیب 44/41 میلی­گرم و 13/7 میلی­گرم) و کمترین در تیمار شاهد (به ترتیب 91/32 میلی­گرم و 14/6 میلی­گرم) مشاهده شد. اکوتیپ نطنز بیشترین میزان وزن تر و خشک کلاله را داشت. بیشترین میزان نیتروژن، فسفر و پتاسیم در غلظت  cfu/ml108 (به ترتیب 55/5 درصد، 66/2061ppm و 8/7540ppm) و کمترین در شاهد (به ترتیب 25/3 درصد، 42/1314ppm و 8/4391ppm) گزارش شد. بیشترین میزان نیتروژن و فسفر در اکوتیپ زنجان مشاده شد. با توجه به نتایج، می­توان استفاده از باکتری باسیلوس در غلظت مناسب را به عنوان کود زیستی در راستای دستیابی به شاخص­های رشدی مطلوب در زعفران سودمند دانست.

کلیدواژه‌ها

عنوان مقاله [English]

Study of morphophysiological attributes of two saffron ecotypes treated with ‎Bacillus subtilis under Zanjan climatic conditions

نویسندگان [English]

  • Fahimeh Salehi 1
  • mitra aelaei 2
  • Seyed Najmeddin Mortazavi 3
  • Seyed Alireza Salami 4
  • Hassan Rezadoost Chahardeh 5

1 Ph. D. Student, Faculty of Agriculture, University of Zanjan, P. O. 45371-38791, Zanjan, Iran

2 university of zanjan

3 Associate Professor, Faculty of Agriculture, University of Zanjan, P. O. 45371-38791, Zanjan, Iran

4 Associate Professor, Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, ‎P.O. 77871-31587, Karaj, Iran

5 Assistant Professor, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

چکیده [English]

Effect of Bacillus subtilis (0, 102, 105, 106, 108 cfu/ml) was studied on saffron (Crocus sativus L.) ecotypes Natanz and Zanjan during 2017-2019 via a factorial experiment based on randomized complete blocks design in three replicates. Number of leaves per corm, average length of leaves, flowers, petals and sepals, stigma fresh and dry weights, fresh and dry flower yield, number of flowers per plot, total phenol and anthocyanin in petals and the amount of nitrogen, phosphorus and potassium were measured. All morphophysiological were significantly affected due to B. subtilis treatment. The highest and the lowest fresh and dry weight of stigma was observed in 108 cfu/ml (41.44 mg and 7.13 mg) and no treated samples (32.91 mg and 6.14 mg), respectively. The maximum stigma fresh and dry weight was observed in Natanz ecotype. The highest amount of nitrogen, phosphorus and potassium was recorded in 108 cfu / ml (5.55 %, 2061ppm 66.75 and 7540.8 ppm, respectively) and the lowest in control (3.25 %, 1314.42 ppm and 4339.8 ppm, respectively). The highest amount of nitrogen and phosphorus was observed in Zanjan ecotype. According to the results, utilizing the B. bacteria in a proper concentration as a bio fertilizer can be considered beneficial towards optimal growth indices in saffron.

کلیدواژه‌ها [English]

  • Bacillus bacteria
  • Bio-fertilizer
  • Saffron
  • stigma yield‎
  1. Abbas, M.K., & Ali, A.S. (2010). Effect of foliar application of NPK on some growth characters of two cultivars of Roselle (Hibiscus sabdariffa). American Journal of Plant Physiology, 6(4), 22-227.
  2. Armak, A., Farzi, H., & Alipanah, M. (2018). Impact of use of different sources of humic, bio and nano fertilizers and nitrogen levels on saffron (Crocus sativus ) flower yield. Saffron Agronomy and Technology, 5(4), 329-344.
  3. Alipour Miandehi, Z., Mahmoudi, S., Behdani, M., & Sayari, M. H. (2014). The effect of coriander weight and consumption of different types of fertilizer on some growth characteristics and yield of saffron (Crocus sativus) under dead conditions. Journal of Saffron Research, 2, 112-97. (In Farsi).
  4. Anbarani, M. (1990). Red Gold Saffron, first edition, Mashhad. Astan Quds. (In Farsi).
  5. Ministry of Agriculture Statistics. (2010). Publications Ministry of Agriculture. (In Farsi.)
  6. Antoun, H., & Kloepper, J. (2001). Plant Growth Promotion Rhizobacteria. Academic Press USA, 353, 402-407.
  7. Armak, A., Farzi, H., & Alipanah, M. (2018). Impact of use of different sources of humic, bio and nano fertilizers and nitrogen levels on saffron (Crocus sativus ) flower yield. Saffron Agronomy and Technology, 5(4), 329-344
  8. Bashan, Y., & Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances. Canadian Journal of Microbiology, 43, 103-121.
  9. Bathaei, S.Z., & Mousavi, S.Z. (2010). New applications and mechanism of action of saffron and its important ingredients. Critical Reviews in Food Science and Nutrition, 50 (8), 761-786.
  10. Behdani, M.A., Jami-Alahmadi, M., & Akbarpour, A. (2010). Research Project: Category ecological approach to optimize the production of saffron in Southern Khorasan. Birjand University, pp.107 (In Farsi).
  11. Bowen, G., & Rovira, A. (1999). The rhizosphere and its management to improve plant growth. Advances in. Agronomy, 66, 1-102.
  12. De Souzo, I. R. P., & MacAdam, J. W. (2002). Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays ) leaf blades: a transient increase in apoplastic peroxidase activity procedes cessation of cell elongation. Journal Experimental. Botany, 52, 1673-1682.
  13. Ehteshami, S.M., Poorebrahimi, M., & Khavazi, K. (2013). The effect of Pseudomonas fluorescens strain 103 with phosphorus fertilizer on nutrient concentration and biological yield of two barley cultivars under greenhouse conditions, Journal of Science and Technology of Greenhouse Cultivation, 1(16), 56-61. (In Farsi).
  14. Eldin, M.S., Elkholy, S., Fernández, J.A., Junge, H., Cheetham, R., Guardiola, J., & Weathers, P. (2008). Bacillus subtilis FZB24 affects flower quantity and quality of saffron (Crocus sativus ). Planta Medica, 13(74), 16-20.
  15. Emami, A. (1997). Plant decomposition methods.Volume One, Issue No. 982.Soil and Water Research Institute. (in Farsi).
  16. Emami, N., Hassani, A., Vaezi, A.R., & Baba Akbari Sari, M. (2021) The effect of application of bio-fertilizer containing Pantoea agglomerans compared to urea fertilizer on growth and quality of turfgrass. Iranian Journal of Horticultural Science, 25(2), 341-351. (in Farsi).
  17. Esitken, A., Yildiz, H.E., Ercisli, S., Figen Donmez, M., Turan, M., & Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulture, 124, 62-66.
  18. Euzéby, J. P. (2008). Bacillus. List of Prokaryotic names with Standing in Nomenclature. Retrieved 2008-11-18.
  19. Falahi, H.R., Elmi, S., Behdani, M.A., & Aghvahani Shajari, M. (2016). Evaluation of indigenous and modern knowledge of saffron cultivation. (Case study: Sarayan). Journal of Saffron Research, 8(7), 87-21. (In Farsi).
  20. Fiori, M., Falchi, G., Quaglia, M., & Cappelli, C. (2007). Saffron (crocus sativus) diseases in Italy. Plant Pathology, 89,27-68
  21. Glick, BR. (1995). The enhancement of plant growth by free-living bacteria. Journal Microbiology, 41, 109-17.
  22. Golpayeghani, A., Heydari, M., Gholami, H., & Sadeghi, M. (2010). Sustainable production and improving growing herbs basil (Ocimum basilicum ) in response to the inoculated bacteria growth promoting (PGPR). New Ideas Fifth National Conference on Agriculture, Islamic Azad University Branch (Isfahan), College of Agriculture, 28-27 February, pp 510-521.
  23. Grosch, RJ., Krebs, B., & Bochow, H. (1999). Use of Bacillus subtilis as biocontrol-agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. Journal of Plant Diseasea and Protection, 106 (2), 568-80.
  24. Gutierrez-Manero, F.J., Ramos-Solano, B. Probanza, A. Mehouachi, J. Tadeo F.R., & Talon, M. (2001). The plantgrowth- promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Plant Physiology, 111, 206-211.
  25. Hamidi, A.R., Asgharzadeh, M., Chokan, M., Dehghan shoar, M., & Malekoti, J. (2007). The effect of application of plant growth promoting bacteria on various aspects of corn growth and development in a sustainable agricultural system with sufficient input. In: Proceedings of the 10th Iranian Soil Science Congress. 26 August, Karaj, pp. 119-123. (In Farsi).
  26. Han, H. S., & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Agriculture and Biological Sciences, 1, 210-215.
  27. Hassan, F.A.S. (2009). Response of Hibiscus sabdariffa plant to some biofertilization treatments. Annals of Agricultural Science, 54, 437-446.
  28. Hazarika, D.K., Taluk Dar, N.C., Phookan, A.K., Saikia, U.N., Das, B.C., & Deka, P.C. (2000). Influence of vesicular arbascular mycorrhizal fungi and phosphate solubilizng bacteria on nursery establishment and growth of tea seedlings in assam. Symposium no. 12, 14-17 Oct, Assam Agricultural University, Jorhat- Assam, India. 12, 253-261.
  29. Hodgson, E. (2004). The textbook of modern toxicology (3th ed). Hoboken, New Jersey, pp. 51- 54.
  30. Kakhki Daneshvar, M., & Farahmand Gelyan, K. (2012). Review of interactions between ecommerce, brand and packaging on value added of saffron: A structural equation modeling approach. Afric. Journal of Business Management, 6, 7924-7930.
  31. Khan, A.G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355-364.
  32. Khosravi, H. (2003). Application of biological fertilizers in cereal cultivation. Collection of articles on the production of biological fertilizers in the country. National Soil and Water Research Institute. 179-194. (In Farsi).
  33. Kloepper, JW., Lifshitz, R., & Novacky, A. (1998). Pseudomonas inoculation to benefit plant Animal and Plant Sciences, 60-4.
  34. Koocheki, A. (2013). Research on production of saffron in Iran: Past trend and future prospects. Saffron Agronomy and Technology, 1 (1), 3-21. (In Farsi).
  35. Koocheki, A., Jahani, M., Tabrizi, L., & Mohammad abadi, A. (2011). Evaluate the effectiveness of biological and chemical fertilizers and plant density on yield and characteristics of saffron corm flower (Crocus sativus ). Journal of gricultural Science and Technology, 25 (1), 196-206. (In Farsi).
  36. Kumar, R. N., Thirumalai Arasu, V., & Gunasekaran, P. (2002). Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Current Science, 82, 12-25.
  37. Kumar, A., Verma, H., Singh, V. K., Singh, P. P., Singh, S. K., Ansari, W. A., & Pandey, K. D. (2017). Role of Pseudomonas in sustainable agriculture and disease management. Agriculturally Important Microbes for Sustainable Agricultur, 37, 195-215.
  38. Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M.K., & Ahuja, P.S. (2009). State of art of saffron (Crocus sativus ) agronomy: A comprehensive review. Food Reviews International, 25, 44-85.
  39. Lashkari, M., Mahmoodi, S., Alikhani, H.A., & Sayyari Zohan, M.H. Effect of Pseudomonas fluorescence strains and humic acid on some morphological and physiological characteristics of marshmallow (Altheae officinalis L.), Iranian Journal of Horticultural Science, 52(3), 619-632. (in Farsi).
  40. Maricel, V. S., Zygadlo, J., Giordano, W., & Banchio, E. (2011). Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiology and Biochemistry, 49 (10), 1177-82.
  41. Maxwell, C. A., Hartwig, U. A., Joseph, C. M., & Phillips, D.A. (1989). Chalconeand two related flavonoids from alfalfa roots induce nog genes of Rhizobium meliloti. Plant Physiology, 91, 842-847.
  42. Mehboob I., Naveed M., & Zahir Z.A. (2009). Rhizobial association with non-legumes: Mechanismsand application, Critical Reviews in Plant Science, 28, 432-456.
  43. Melnyk, J.P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world’s most expensive spice: Saffron. Food Research International, 43, 1981-1989.
  44. Mikovacki, N., Marinkovic, J., Cacic, N., & Bgelic, D. (2010). Microbial abundance in rhizosphere of sugarbeet in dependence of fertilization and inoculation with Azotobacter Chroococcum. Research Journal of Agricultural Sci, 42 (3), 260-4.
  45. Minorsky, P.V. (2008). On the inside. Plant Physiol, 146: 323-324.
  46. Mohammadpour Vashvaei, R., Ghanbari, A., & Fakhri, B. (2015). The effect of integrated nutrition composition on the concentration of elements N, P and K, biochemical characteristics and performance of sour tea cups (Hibiscus sabdariffa). Iranian Journal of Crop Science, 46 (3), 517-497. (In Farsi).
  47. Molina, R. V., Valero, M., Navarro, Y., Garcia-Luis, A., & Guardiola, J. L. (2004). The effect of time of corm lifting and duration of incubtion at inductive temperature on flowering in the saffron plant (Crocus sativus ). Science Horticulturae, 103, 79-91.
  48. Naghdibadi, H.A., Omidi, H., Golzad, A., Torbati, H., & Fotookian, M.H. (2011). Changein crocin, safranal and picrocrocin cotent and agronomical characters of saffron (Crocus sativus) under biological and chemical of phosphorous fertilizers. Journal of Medicinal Plant, 40(4), 58-68.
  49. Naveed, M., Khalid, M., Jones, D. L., Ahmad, R., & Zahir, Z. A. (2008). Relative efficacy of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays ) in the presence of organic fertilizer. Pakistan Journal of Botany, 40(3), 1243-1251.
  50. Nehvi, F.A., Lone, A.A., Khan, M.A., & Maghdoomi, M.I. (2010). Comparative study on effect of nutrient management on growth and yield of saffron under temperate conditions of Keshmir. Acta Horticulturae 850, 165-170.
  51. Nieto, K. F., & Frankenberger, W. T. (1989). Biosynthesis of cytokinins in soil. Soil Science. Society of Journal, 53, 735-40.
  52. Nieto, K.F., & Frankenberger, W.T. (1989). Biosynthesis of cytokinins produced by Azotobacter chroococcum. Biology and. Biochemistry, 21, 967-72.
  53. Nile, S.H., & Park, S.W. (2013). Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa ). Frontiers in Life Science, 7, 224-228.
  54. Norouzi, S., & Khademi, H. (2010). Ability of alfalfa (Medicago sativa ) to take up potassium from different micaceous minerals and consequent vermiculitization. Plant Soil, 328, 83-93.
  55. Omidi, H., Naghdi Badi, H.A., Golzad, A., Torabi, H., & FootouKian, M.H. (2009). The effect of chemical and biofertilizer source of nitrogen on qualitative and quantitative yield of saffron. Journal of Medicinal Plants, 8 (30), 98-109. (In Farsi).
  56. Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of soil analysis. Part Chemical precautions and processing. Animal Waste Management, 6, 100-105.
  57. Parray, J. A., Kamili, A. N., Reshi, Z. A., Hamid, R., & Qadri, R. A. (2013). Screening of beneficial properties of rhizobacteria isolated from saffron (Crocus sativus ) rhizosphere. African Journal of Microbiology Research, 7 (23), 2905-2910.
  58. Petter, N. K., & Varma, D. P. S. (1990). Phenolic compounds as regulators ofgene expression in plant-microbe interaction. Molecular Plant-Microbe Interactions Journal, 3, 4-8.
  59. Pierre Anoshi, E., imam, E., & Jamali, R. (2010). Comparison of the effects of biofertilizers with chemical fertilizers on growth, yield and oil content of sunflower (Helianthus annuss) at different levels of drought stress. Journal Agricultural Economics, 2(3), 492- 501. (In Farsi).
  60. Ping, L., & Boland, W. (2004). Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9 (6), 263 - 6.
  61. Piri, R., Moradi. A., Maghsoudi. A., Fereydoni, M. J., & Amrolahi, M. H. (2017). Effect of seed primer on plant growth retardant bacteria on germination indices and seedling cumin seeds (Cuminum cyminum ) under drought stress. The Second International Congress and 14th National Congress on Agriculture and Plant Breeding in Iran. 9-11 September. University of Guilan. Rasht. Iran. pp 328-331. (In Farsi).
  62. Pradhan, N., & Sukla, L.B. (2005). Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Journal of Biotechnology, 5, 850-854.
  63. Rademacher, W. (1994). Gibberellin formation in Journal of Plant Growth Regulation, 15, 303-14.
  64. Rai, UN., Pandey, K., Sinha, S., Singh, A., Saxena, R., & Gupta, DK. (2004). Revegetating fly ash landfills with Prosopis juliflora L: impact of different amendments and Rhizobium inoculation. Environment. International, 30, 293-300.
  65. Rayipour, L., & Asghar zadeh, N. Z. (2008). Interaction of phosphate-solubilizing bacteria and (Bradyrhizobium japonicum) on growth indices of food tuber in soybeans. Journal of Agricultural Science and Technology, 40 (11), 63-53.
  66. Ratti, N., Kumar, S., Verma, H.N., & Gautam, S.P. (2001). Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiological Research, 156, 145-149.
  67. Salehi, K., Soloki, M., & Tanha, M. (2017). Study of the effects of growth-promoting bacteria and salicylic acid on green mint (Mentha spicata) under drought stress. Modern Genetics Quarterly, 12(2), 241-252. (In Farsi).
  68. Sharaf-Eldin, M.A., Elkholy, S., Fernández, J.A., Junge, H., Cheetham, R.D., Guardiola, J.L., & Weathers, P.J. (2008). The effect of Bacillus subtilis FZB24 on flowers quantity and quality of saffron (Crocus sativus). Planta Medica, 74 (10), 1316-1320.
  69. Sheng, X. (2005). Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry, 37, 1918-1922.
  70. Shi, W., Wang, X., & Yan, W. (2004). Distribution patterns of available P and K in rape rhizosphere in relation to genotypic difference. Plant Soil, 261, 11-16.
  71. Singh, S., & Kapoor, K. K. (1998). Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils, 28, 139-44.
  72. Taiz, L., & Zeiger, E. (2006). Plant Physiology, (4th Edition). Sinauer Associates, Sunderland, Mass, 623p.
  73. Vitrac, X., Larronde, F., Krisa, S., Decendit, A., Deffieux, G., & Merillon, J.M. (2000). Sugar sensingand Ca2+ calmodulin requirementin Vitis vinifera cells producing anthocyanins. Phytochemistry, 53, 659-665.
  74. Wagner, G.J. (1979). Content and vacuol/extra vacuole distribution of neutral sugar, free amino acid and anthocyanins in protoplast. Plant Physiology, 64, 88- 93.
  75. Wu, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., & Wong, M.H. (2004). Effect of bio fertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth. Geoderma, 125, 155-166.
  76. Zhang, N., Wang, D., Liu, Y., Li, S., Shen, Q., & Zhang, R. (2013). Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil, 374, 689-700.