‏‌تأثیر نانوسیلیکون بر خصوصیات رشد، فیزیولوژی و بیوشیمیایی بادرشبو ‏(‏Dracocephalum moldavica L.‎‏) در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

تنش شوری یکی از مهمترین عوامل محدود­کننده غیر­زیستی است که عملکرد گیاهان دارویی را کاهش می­دهد. به­منظور مطالعه اثر محلول‌پاشی سطوح مختلف نانوذرات سیلیسیم بر خصوصیات رشد، شاخص­های فیزیولوژیک و بیوشیمایی بادرشبو (Dracocephalum moldavica L.) در شرایط تنش شوری، آزمایشی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار و هرتکرار شامل دو گلدان در شرایط آبکشت (هیدروپونیک) در گلخانه دانشگاه محقق اردبیلی در سال 1397 اجرا شد. تیمارهای آزمایشی شامل تنش شوری در چهار سطح (صفر، 50، 100 و 150 میلی‌مولار کلرید­سدیم)­ و محلول­پاشی با نانو­ذرات سیلیسم در سه سطح (صفر، 100 و 500 میلی­گرم در لیتر) بودند. شاخص­های مورفولوژیک مانند ارتفاع گیاه، تعداد شاخه جانبی، وزن تر و خشک بخش هوایی و شاخص­های فیزیولوژیک شامل کلروفیل، نشت غشاء، محتوی آب نسبی و شاخص­های بیوشیمیایی شامل پرولین و آنزیم­های آنتی­اکسیدانی اندازه­گیری شد. نتایج نشان داد شوری شاخص­های مورفولوژیک مانند ارتفاع گیاه، وزن تر و خشک اندام هوایی، شاخص­های فیزیولوژیک شامل کلروفیل و محتوی آب نسبی را به طور معنی­داری کاهش داد و باعث افزایش میزان نشت غشاء و  مقدار پرولین گردید. درحالی که محلول­پاشی نانوسیلیسیم از طریق افزایش رشد و فعالیت آنزیم­های آنتی­اکسیدانی از قبیل آسکوربات­پراکسیداز و سوپراکسید­دیسموتاز موجب کاهش آثار منفی تنش شوری گردید. بهترین اثر بهبود­دهندگی نانوسیلیسیم در اکثر شاخص­های مورد بررسی، تیمار 500 میلی­گرم­در­لیتر نانوسیلیسیم بود. بنابراین استفاده از شکل نانو عنصر سیلیسیم به­عنوان کاهش­دهنده آثار منفی تنش شوری در بادرشبو پیشنهاد می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of nano silicon on‏ ‏growth, physiology and biochemical of Dracocephalum ‎moldavica L.‎‏ ‏under salinit stress condiyion

نویسندگان [English]

  • Behrooz Esmaielpour 1
  • Mortaza Sheikhalipour 2
  • Musa Torabi 3
1 Professor, Faculty of Agriculture Science and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Ph.D. Candidate, Faculty of Agriculture Science and Natural Resources, University of Mohaghegh Ardabili, ‎Ardabil, Iran
3 Assistant Professor, Faculty of Agriculture Science and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Salinity stress is one of the most important constraint for yield of medicinal plants. In order to investigation the effects of silicon nanoparticle foliar spraying on growth characteristic, physiological and biochemical parameters of dragonhead (Dracocephalum moldavica L.) under salinity stress condition a factorial experiments based on completely randomized design with three repetitions and each repetition, including two pots in hydroponic conditions was carried out at research greenhouse of Mohaghegh Ardabili University at 2018-2019. Experimental factors consisting salinity stress at four levels (0, 50, 100 and 150 mM of Nacl) and foliar spraying of silicon nanoparticle at three levels (0, 100 and 500 mg/l). Morphological studied traits including plant height, fresh and dry weight of plant, physiological parameters such as chlorophyll, electrolyte leakage, relative water contents and biochemical parameters such as proline and antioxidant enzyme activity were measured. Results indicated that salinity stress significantly decreased morphological traits include plant height, fresh and dry weight of plant and physiological parameters such chlorophyll and relative water content of leaves were reduced, while free proline content of leaves and electrolyte leakage from cell membranes were increased. Foliar spraying of silicon nanoparticle alleviated salinity stress effects on dragonhead plants via increases in growth characteristics and enhancing antioxidant enzyme activity such as ascorbate peroxidase and super oxide desmutase. Five hundreds mg/mL of nanosilicon showed the maximum effect on diminishing negative effects of salt stress on most of the parameters. Therefore, the use of nano-form of silicon element is proposed as alleviator of salt stress in dragonhead.

کلیدواژه‌ها [English]

  • Dragonhead
  • nanoparticle
  • salinity stress
  • silicon
  1. Abdel-Haliem, M. E., Hegazy, H. S., Hassan, N. S., & Naguib, D. M. (2017). Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering, 99, 282-289.
  2. Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N., Wijaya, L., & Ali, S. (2019a). Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38, 70-82
  3. Ahmed, M., Hassen, F. U., Qadeer, U., & Aslam, M. A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594-607.
  4. Alaei, M., Karami Zarandi, , Arghavani, M., & Salehi, F. (2021). The Study of effects of spermine under salinity stress on morphophysiological characteristics of Catharanthus roseus L. Iranian Journal of Horticultural Science , 52(3), .553-564 (In Farsi).
  5. Al-Aghabary, K., Zhu, Z., & Shi, Q. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-2115.
  6. Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus Plant Physiology, 123(3), 1047-1056.
  7. Amirossadat, Z., Mohammadi Ghehsareh, A., & Mojiri, A. (2012). Impact of silicon on decreasing of salinity stress in greenhouse cucumber (Cucumis sativus) in soilless culture. Journal of Biological Environmental Science, 6(17), 171-174.
  8. Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246.
  9. Banerjee, A., & Roychoudhury, A. (2017). Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene, 11, 199-204.
  10. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
  11. Cao, B. L., Wang, L., Gao, S., Xia, J., & Xu, K. (2017). Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma, 254(6), 2295-2304.
  12. Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67-76.
  13. Chutipaijit, S., Cha-um, S., & Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in 'Oryza sativa' spp.'indica'. Australian Journal of Crop Science, 5(10), 1191.
  14. Da Silva Lobato, A. K., Guedes, E. M. S., Marques, D. J., & de Oliveira Neto, C. F. (2013). Silicon: a benefic element to improve tolerance in plants exposed to water deficiency. Responses of Organisms to Water Stress, 95-113.
  15. Dantas, B. F., Ribeiro, L. D. S., & Aragão, C. A. (2007). Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Revista Brasileira de Sementes, 29(2), 106-110.
  16. Dastmalchi, K., Dorman, H. D., Laakso, I., & Hiltunen, R. (2007). Chemical composition and antioxidative activity of dragonhead (Dracocephalum moldavica) extracts. LWT-Food Science and Technology, 40(9), 1655-1663.
  17. De Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany. 49: 107-120.
  18. Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus the protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(4), 272-280.
  19. Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101.
  20. Doshi, R., Braida, W., Christodoulatos, C., Wazne, M., & O’Connor, G. (2008). Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environmental Research, 106(3), 296-303.
  21. El-Ramady, H., Alshaal, T., Abowaly, M., Abdalla, N., Taha, H. S., Al-Saeedi, A. H., & Sztrik, A. (2017). Nanoremediation for sustainable crop production. In Nanoscience in Food and Agriculture 5 (pp. 335-363). Springer, Cham.
  22. Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., & Faiq, M. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2), 391-404.
  23. Farhangi-Abriz, S., & Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255(3), 953-962.
  24. Fleck, A. T., Schulze, S., Hinrichs, M., Specht, A., Waßmann, F., Schreiber, L., & Schenk, M. K. (2015). Silicon promotes exodermal casparian band formation in si-accumulating and si-excluding species by forming phenol complexes. PLoS One, 10(9), e0138555.
  25. Gomes-Filho, E., Lima, C. R. F. M., Costa, J. H., da Silva, A. C. M., Lima, M. D. G. S., de Lacerda, C. F., & Prisco, J. T. (2008). Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Reports, 27(1), 147-157.
  26. Gong, H.J., Chen, K.M., Chen, G.C., Wang, S.M., & Zhang, C.L. (2003). Effect of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26(5), 1055-1063.
  27. Gong, H.J., Randall, D.P., & Flowers, T.J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa) seedlings by reducing bypass flow. Plant, Cell & Environment. 29, 1970-1979.
  28. Haghighi, M., & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum) at early growth stage. Scientia Horticulturae. 161: 111- 117.
  29. Hajiboland, R., & Cheraghvareh, L. (2014). Influence of Si supplementation on growth and some physiological and biochemical parameters in salt-stressed tobacco (Nicotiana rustica) plants. Journal of Sciences, 25(3), 205-217.
  30. Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In Crop stress and its management: Perspectives and strategies (pp. 261-315). Springer, Dordrecht.
  31. Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer, New York, NY.
  32. Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxová, M., & Sugimoto, Y. (2003). Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant and Cell Physiology, 44, 743-749.
  33. Hernandez, J. A., Jiménez, A., Mullineaux, P., & Sevilia, F. (2000). Tolerance of pea (Pisum sativum) to long‐term salt stress is associated with induction of antioxidant defences. Plant Cell and Environment, 23(8), 853-862.
  34. Hussein, M. S., El-Sherbeny, S. E., Khalil, M. Y., Naguib, N. Y., & Aly, S. M. (2006). Growth characters and chemical constituents of Dracocephalum moldavica plants in relation to compost fertilizer and planting distance. Scientia Horticulturae, 108(3), 322-331.
  35. Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5), 435-458.
  36. Kafi, M., Nabati, J., Masoumi, A., & Mehrgerdi, M. Z. (2011). Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pakistan Journal of Botany, 43(5), 2457-2462.
  37. Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A., & Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. Journal of Plant Nutrition, 26(4), 807-820.
  38. Kiani Chalmardi, Z., Abdolzadeh, A., & Sadeghipour, H. R. (2012). Evaluation of the effects of silicon nutrition on alleviation of iron deficiency in rice plants (Oriza sativa) with emphasis on growth and antioxidant enzymes activity. Iranian Journal of Plant Biology. 4(14):74-61 (In Farsi).
  39. Kusvuran, S., Ellialtioglu, S., Yasar, F., & Abak, K. (2012). Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology, 11(3), 635-641.
  40. Lee, S. K., Sohn, E. Y., Hamayun, M. Yoon, J. Y., & Lee, I. J. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80, 333-340
  41. Liang, Y. C., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stress in higher plants: a review. Environmental Pollution, 147, 422-428.
  42. Liang, Y., Chen, Q. I. N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare ). Journal of Plant Physiology, 160(10), 1157-1164.
  43. Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S., & Tanaka, K. (2015). Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor Environmental and Experimental Botany, 111, 42-51.
  44. Mane, A. V., Karadge, B. A., & Samant, J. S. (2010). Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. Journal of Chemical and Pharmaceutical Research, 2(3), 338-347.
  45. Marschner, H., & Römheld, V. (1994). Strategies of plants for acquisition of iron. Plant and Soil, 165(2), 261-274.
  46. Mohebi, M., Babalar, M., Fattahi Moghadam, M.R. & Askary, M.A. (2021). Effects of potassium and calcium on vegetative growth and mineral balance of apple tree grafted on dwarfing rootstocks, under salinity stress. Iranian Journal of Horticultural Science, 52(2): 429-446 (In Farsi).
  47. Mohsenzadeh, S., Shahrtash, M., & Mohabatkar, H. (2011). Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iranian Journal of Science and Technology, 201(1), 57-60(In Farsi).
  48. Mohsenzadeh, S., Shahrtash, M., & Teixeira de Silva, J. A. (2012) Silicon improves growth and alleviates toxicity of cadmium in maize seedling. Plant Stress, 6(1), 39-43.
  49. Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays). International Journal of Agriculture and Biology, 8(3), 293-297.
  50. Mozaffarian, V. (2003). Iranian plant names culture. University of Tehran Publications. 395 pages. (In Farsi).
  51. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Eenvironment, 25(2), 239-250.
  52. Naeem, M., Ansari, A. A., & Gill, S. S. (2017). Essential plant nutrients: uptake, use efficiency, and management. Springer, 350 pp.
  53. Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Roles of osmolytes in plant adaptation to drought and salinity. In Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 37-68). Springer, New Delhi.
  54. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.
  55. Nayyar, H., & Walia, D. P. (2003). Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biological Plantarum, 46, 275-279.
  56. Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44(3), 797-805.
  57. Othman, Y., Al-Karaki, G., Al-Tawaha, A. R., & Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2(1), 11-15.
  58. Pahlich, E., Kerres, R., & Jäger, H. J. (1983). Influence of water stress on the vacuole/extravacuole distribution of proline in protoplasts of Nicotiana rustica. Plant Physiology, 72(2), 590-591.
  59. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-a review. Plant Soil and Environment, 54(3), 89.-99.
  60. Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J., & Zhou, W. J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum) seedling. Journal of Plant Growth Regulation, 29, 106-115.
  61. Peyvandi, M., Parande, H., & Mirza, M. (2011). Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicum. New Cellular and Molecular Biotechnology Journal, 1(4), 89-98 (In Farsi).
  62. Rahimi, R., Mohammakhani, A., Roohi, V., & Armand, N. (2012). Effects of salt stress and silicon nutrition on cholorophyll content, yield and yield components in fennel (Foeniculum vulgare). International Journal of Agriculture and Crop Sciences, 4(21), 1591-1595.
  63. Redmann, R. E., Haraldson, J., & Gusta, L. V. (1986). Leakage of UV‐absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum, 67(1), 87-91.
  64. Reezi, S., Kalantari, M. B. S., Okhovvat, S. M., & Jeong, B. R. (2009). Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa hybrida)'Hot Lady'. African Journal of Biotechnology, 8(8), 1502.
  65. Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111.
  66. Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163(8), 847-855.
  67. Roychoudhury, A., Banerjee, A., & Lahiri, V. (2015). Metabolic and molecular-genetic regulation of proline signaling and itscross-talk with major effectors mediates abiotic stress tolerance in plants. Turkish Journal of Botany, 39(6), 887-910.
  68. Sacala, E. (2009). Role of silicon in plant resistance to water stress. Journal of Elementology, 14(3), 619-630.
  69. Sattar, A., Cheema, M. A., Abbas, T., Sher, A., Ijaz, M., & Hussain, M. (2017). Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russian Journal of Plant Physiology, 64(3), 341-348.
  70. Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11, 1485.
  71. Shahrtash, M., & Mohsenzadeh, S. (2011). The effect of silicon on biochemical characteristics of maize seedling infected by Pythium aphanidermatum during periods of high temperature and humidity. Asian Journal Experimental Biology Science, 2(1), 96-101.
  72. Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131.
  73. Shu, L. Z., & Liu, Y. H. (2001). Effects of silicon on growth of maize seedlings under salt stress. Agro-Environmental Protection, 20(1), 38-40.
  74. Siddiqui, M. H., Al‐Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo Environmental toxicology and Chemistry, 33(11), 2429-2437.
  75. Siringam, K., Juntawong, N., Cha-um, S., & Kirdmanee, C. (2011). Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa spp. indica) roots under isoosmotic conditions. African Journal of Biotechnology, 10(8), 1340-1346.
  76. Soundararajan, P., Manivannan, A., Ko, C. H., & Jeong, B. R. (2018). Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. Journal of Plant Growth Regulation, 37(1), 16-34.
  77. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., & Kannan, N. (2012). Growth and physiological responses of maize (Zea mays) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14(12), 1294-1296.
  78. Swain, R., & Rout, G. R. (2017). Silicon in agriculture. In Sustainable Agriculture Reviews (pp. 233-260). Springer, Cham.
  79. Tahir, M. A., Rahmatullah, T., Aziz, M., Ashraf, S., Kanwal, S., & Maqsood, M. A. (2006). Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pakistan Journal of Botany, 38(5), 1715-1722.
  80. Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62, 10-16.
  81. Voetberg, G., & Stewart, C. R. (1984). Steady state proline levels in salt-shocked barley leaves. Plant Physiology, 76(3), 567-570.
  82. Wang, S., Liu, P., Chen, D., Yin, L., Li, H., & Deng, X. (2015). Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontiers in Plant Science, 6, 759, 1-10.
  83. Wang, X., Wei, Z., Liu, D., & Zhao, G. (2011). Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10(4), 545.
  84. Wu, J., Guo, J., Hu, Y., & Gong, H. (2015). Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 6, 453.
  85. Yassen, A., Abdallah, E., Gaballah, M., & Zaghloul, S. (2017). Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus). International Journal of Agricultural Research, 22, 130-135.
  86. Yin, L., Wang, S., Li, J., Tanaka, K., & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35, 3099-3107.
  87. Zare, H., Ghanbarzadeh, Z., Behdad, A., & Mohsenzadeh, S. (2015). Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays) seedlings. Iranian Journal of Plant Biology, 7(26), 59-74. (In Farsi).
  88. Zhu, Y.X., Xu, X.B., Hu, Y.H., Han, W.H., Yin, J.L., Li, H.L., & Gong, H.J. (2015). Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus Plant Cell Reports, 34, 1629-1646.