پاسخ‌های ریخت‌شناسی و فیزیولوژیکی نهال پیوندی انگور بیدانه سفید روی پایه ایرانی و خارجی در ‏شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، بخش تحقیقات علوم زراعی- باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان‌غربی، سازمان ‏تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

4 استادیار، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

5 استادیار، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

تنش خشکی اثرات مختلفی بر رشد و متابولیسم گیاهان گذاشته و از مهمترین فاکتور محدود کننده رشد انگور می‌باشد. به­منظور بررسی اثر تنش خشکی بر برخی صفات ریخت شناسی و تبادلات گازی، انگور بیدانه سفید به­صورت خود ریشه و پیوند شده روی انگور رقم رشه و پایه 1103-P انتخاب شدند. این پژوهش به­صورت فاکتوریل بر پایه طرح کاملاً تصادفی در سه سطح تیمار تنش خشکی و با چهار تکرار در سالهای 1395-1394 اجرا گردید. تنش خشکی پس از رشد کافی نهال­ها اعمال گردید. زمان رسیدن نهال­ها به سطوح تنش متوسط و تنش شدید به روش وزنی- حجمی تعیین گردید. پایداری غشای سلولی (MSI)، محتوای نسبی آب برگ (RWC)، سطح  برگ (LA)، نسبت وزن خشک برگ به سطح برگ (LMA)، سطح ویژه برگ (SLA)، میزان کلروفیل a , b ، شدت فتوسنتز (A)، هدایت روزنه­ای (gs) و میزان تعرق (E) اندازه­گیری گردید. نتایج نشان داد که تنش خشکی سبب کاهش معنی‌دار MSI و RWC گردید. LA و LMA بین سطوح مختلف تنش اختلاف معنی‌دار نشان داد. در شرایط تنش، مقدار SLA پیوندک روی پایه‌های پیوندی با حالت غیرپیوندی تفاوت معنی‌دار داشت. میزان کلروفیل، شدت فتوسنتز، هدایت روزنه­ای و تعرق با افزایش سطح تنش خشکی به­طور معنی‌دار کاهش یافت. نتایج بررسی صفات مورد اندازه‌گیری بیانگر تأثیر مثبت پایه‌های مورد استفاده بر افزایش میزان تحمل انگور حساس بیدانه سفید پیوندی به شرایط خشکی در مقایسه با گیاهان غیرپیوندی بوده و بر اساس یافته­های این پژوهش پایه ایرانی رشه همانند پایه مشهور 1103-P آمریکایی تحمل خوبی به شرایط تنش خشکی را در پیوندک انگور بیدانه سفید القا نمود. 

کلیدواژه‌ها


عنوان مقاله [English]

Morphological and physiological responses of grafted Sultana grapevine on Iranian ‎and American rootstocks to drought stress

نویسندگان [English]

  • Dariush Madadi 1
  • Ali Ebadi 2
  • Hamed Dolati Baneh 3
  • Vahid Abdousi 4
  • Mehdi hadadinejad 5
1 Ph. D. Candidate, Faculty of Agricultural Science and Food Industries, Science and Research Branch, ‎Islamic Azad University, Tehran, Iran
2 Professor, College of Agriculture & Natural Resouces, University of Tehran, Karaj, Iran
3 Associate Professor, Department of Crop-Horticultural Research, Agricultural Research and Training Center and Natural Resources ‎of West Azerbaijan, Agricultural Research, Education and Extension Organization, Urmia, Iran
4 Assistant Professor, Faculty of Agricultural Science and Food Industries, Science and Research Branch, Islamic Azad University, ‎Tehran, Iran
5 Assistant Professor, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
چکیده [English]

Drought stress has different effects on plant growth and metabolism and is one of the most important factors limiting the growth of grapes. In order to investigate the effect of drought stress on some morphological traits and gas exchanges, own-rooted Sultana cultivar and grafted on Rasheh grape and 1103-P rootstocks were selected. This research was conducted by factorial arrangement in completely randomized design with three levels of drought stress and four replications at 2015-2016. Drought stress was applied after plants growth. The time of plants arrival to medium and severe stress levels was determined by weighted-volumetric method. Membrane stability index (MSI), leaf relative water content (RWC), leaf area (LA), leaf mass area (LMA), specific leaf area (SLA), chlorophyll a, chlorophyll b, photosynthesis rate (A), stomatal conductance (gs) and transpiration rate (E) were measured. The results showed that drought stress significantly decreased MSI and RWC. LA and LMA showed a significant difference between two levels of stress treatments. Under stress conditions, the SLA values ​​of the non-grafted Sultana were significantly different. Chlorophyll a and chlorophyll, gs and E decreased significantly by increasing drought stress. The results of measured traits of this study indicated the positive effect of the rootstocks used on increasing the resistance of susceptible Sultana grapes to drought conditions compared to non-grafted ones. Based on the findings of this research, Iranian grape variety (Rasheh) as the rootstock, as well as the famous American rootstock (1103), showed good tolerance to drought stress.

کلیدواژه‌ها [English]

  • Drought stress
  • gas exchange
  • grapevine rootstocks
  • leaf traits
  1. Ahmadi, K., Gholizadeh, H., Ebadzadeh, H. R., Hatami, F., Hosseinpour, R., Kazemifard, R. &
    Abdoshah, H. (2016). Agricultural Statistics 2015. Volume 3. Publications Center of Information and Communication Technology in Ministry of Agriculture, Tehran. 253 pages. (In Farsi).
  2. Aranda, I., Pardo, F., Gil, L., & Pardos, J. A. (2004). Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecologica25(3), 187-195.
  3. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiology24(1), 1-15.
  4. Asadi, W., Rasouli, M., Gholami, M., & Maleki, M. (2020). Effect of some cultivars of native grapevine as rootstocks and triachenetanol on the‎ physiology of ‘Bidaneh Sefid’grapevine scion (Vitis vinifera), under drought‎ stress. Iranian Journal of Horticultural Science, 51(2), 413-428. (In Farsi).
  5. Azizi, H., Jalilimarandi, R., Hasani, A. & Dolati bane, H. (2009). Effect of drought stress on some morphological and physiological characters of three grapevine cultivar. In: Proceedings of 6th Iranian Horticultural Science Congress. 12-15 July, University of Gilan, Rasht, Iran, pp 527. (In Farsi).
  6. Bica, D., Gay, G., Morando, A., Soave, E. &. Bravdo, B.A., 2000. Effects ofrootstock and Vitis vinifera genotype on photosynthetic parameters. Acta Horticulturae, 526, 373-379.
  7. Candolfi-Vasconcelos, M. Koblet, C., W., Howell, G. S., & Zweifel, W. (1994). Influence of defoliation, rootstock, training system, and leaf position on gas exchange of Pinot noir grapevines. American Journal of Enology and Viticulture45(2), 173-180.
  8. Chaves, M. M. (1991). Effects of water deficits on carbon assimilation. Journal of experimental Botany42(1), 1-16.
  9. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L. & Pinheiro, C. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany89(7), 907-916.
  10. Chaves, M. M., Harley, P. C., Tenhunen, J. D., & Lange, O. L. (1987). Gas exchange studies in two Portuguese grapevine cultivars. Physiologia Plantarum70(4), 639-647.
  11. Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., & Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany105(5), 661-676.
  12. Comas, L. H., Bauerle, T. L., & Eissenstat, D. M. (2010). Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research16(s1), 131-137.
  13. Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends in Plant Science5(5), 187-188.
  14. Dhanda, S. S., Sethi, G. S., & Behl, R. K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science190(1), 6-12.
  15. Düring, H. (1987). Stomatal responses to alterations of soil and air humidity in grapevines. Vitis26(9), 9-18.
  16. Doupis, G., Bosabalidis, A. M., & Patakas, A. (2016). Comparative effects of water deficit and enhanced UV-B radiation on photosynthetic capacity and leaf anatomy traits of two grapevine (Vitis vinifera) cultivars. Theoretical and Experimental Plant Physiology28(1), 131-141.
  17. Escalona, J. M., Flexas, J., & Medrano, H. (2000). Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Functional Plant Biology27(1), 87-87.
  18. Flexas, J., & Medrano, H. (2002a). Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Annals of Botany89(2), 183-189.
  19. Flexas, J., Bota, J., Escalona, J. M., Sampol, B., & Medrano, H. (2002b). Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology29(4), 461-471.
  20. Flexas, J., Galmés, J., Gallé, A., Gulías, J., Pou, A., RIBAS‐CARBO, M., & Medrano, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research16(s1), 106-121.
  21. Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., & McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play?. Journal of Experimental Botany63(18), 6445-6455.
  22. Ghaderi, N., Talaei, A., Ebadi, A. & Lesani, H. (2009). Effect of water stress on some physiological characters of five grapevine cultivars and evaluation of genetic diversity of them in Kurdistan province. Ph.D. Thesis. Faculty of Horticulture. University of Tehran, Iran (In Farsi).
  23. Ghaderi, N, Talaei, A., Ebadi, A., & Lesani, H. (2010). Study of some physiological characteristics in 'Sahani', 'Bidane-sefid' and 'Farkhii' grapes during drought stress and their subsequent recovery. Iranian Journal of Horticultural Science41(2), 179-188. (In Farsi).
  24. Ghaderi, N., Talaie, A. R., Ebadi, A., & Lessani, H. (2011). The physiological response of three Iranian grape cultivars to progressive drought stress. Journal of Agricultural Science and Technology13, 601-609.
  25. Gómez-del-Campo, M., Ruiz, C., Baeza, P., & Lissarrague, J. R. (2003). Drought adaptation strategies of four grapevine cultivars (Vitis vinifera): modification of the properties of the leaf area. OENO One37(3), 131-143.
  26. Granett, J., Walker, M. A., Kocsis, L., & Omer, A. D. (2001). Biology and management of grape phylloxera. Annual Review of Entomology46(1), 387-412.
  27. Hadadinejad, M., Ebadi, A., Fattahi, M.R., Musavi, A., & Nejatian, M.A. (2013). Screening of some grapevine genotypes to find drought tolerance rootstocks with using morphological characteristics, genetic relationships and physiological.D. Thesis. University of Tehran. College of Agriculture and Natural Resources, Iran. (In Farsi).
  28. Hesabi esfahlan, P. & Valizade, M. (2000). Effect of different level of drought stress and soil water on some grapevine (Vitis vinifera L.) cultivar growth, Sc. Thesis. Faculty of Agriculture, Tabriz University, Iran (In Farsi).
  29. Higgins, S. S., Larsen, F. E., Bendel, R. B., Radamaker, G. K., Bassman, J. H., Bidlake, W. R., & Al Wir, A. (1992). Comparative gas exchange characteristics of potted, glasshouse-grown almond, apple, fig, grape, olive, peach and Asian pear. Scientia Horticulturae52(4), 313-329.
  30. Iacono, F., Buccella, A., & Peterlunger, E. (1998). Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines1. Scientia Horticulturae75(1-2), 27-39.
  31. Ibacache, A. G. & Sierra, C. B. (2009). Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chilean Journal of Agricultural Research69(4), 503-508.
  32. Jie, Z., Yuncong, Y., Streeter, J. G., & Ferree, D. C. (2010). Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phophorus absorb in different section of leaves and stem of Fugi/M. 9EML, a young apple seedling. African Journal of Biotechnology9(33), 5320-5325.
  33. Jones, H. G. (2013). Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press.
  34. Jurik, T. W. (1986). Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. American Journal of Botany73(8), 1083-1092.
  35. Kadam, J.H. & Tambe, T.B. (2004). Investigation on various grape rootstocks for drought tolerance. In: Proceedings of 28 th World Congress of Vine and Wine, 4-9 July, Wien, Austria. p. 10.
  36. Kafi, M. & Mahdavi Damghani, A. (2009). Resistance mechanisms of plants to environmental stresses. Ferdowsi University of Mashhad Publication, 476 p. (In Farsi).
  37. Koundouras, S., Tsialtas, I. T., Zioziou, E., & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera cv. Cabernet–Sauvignon) under contrasting water status: leaf physiological and structural responses. Agriculture, Ecosystems and Environment128(1-2), 86-96.
  38. Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment25(2), 275-294.
  39. Lei, Y., Yin, C., & Li, C. (2006). Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskiiPhysiologia Plantarum127(2), 182-191.
  40. Lovisolo, C., Hartung, W., & Schubert, A. )2002(. Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Functional Plant Biology, 29:1349-1356.
  41. Lovisolo, C., Hartung, W., & Schubert, A. (2002). Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Functional Plant Biology29(11), 1349-1356.
  42. Lovisolo, C., Perrone, I., Carra, A., Ferrandino, A., Flexas, J., Medrano, H., & Schubert, A. (2010). Drought-induced changes in development and function of grapevine (Vitis) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Functional Plant Biology37(2), 98-116.
  43. Marchese, J. A., Ferreira, J. F., Rehder, V. L., & Rodrigues, O. (2010). Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua, Asteraceae). Brazilian Journal of Plant Physiology22(1), 1-9.
  44. Medrano, H., Escalona, J. M., Bota, J., Gulias, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany89(7), 895-905.
  45. Mouro-Pereira, J., Alves, B. G., BAcɛLAR, E., CUNHA, J. B., Couro, J., & Correia, C. M. (2009). Effects of elevated CO, on grapevine (Vitis vinifera): Physiological and yield attributes. Vitis48(4), 159-165.
  46. Naor, A., & Wample, R. L. (1994). Gas exchange and water relations of field-grown Concord (Vitis labruscana Bailey) grapevines. American Journal of Enology and Viticulture45(3), 333-337.
  47. Ollat, N., Tandonnet, J. P., Bordenave, L., Decroocq, S., Geny, L., Gaudillere, J. P., & Hamdi, S. (2003). Vigour conferred by rootstock: hypotheses and direction for research. Bulletin de l'OIV, 76, 581-595.
  48. Pavlousek, P. (2011). Evaluation of drought tolerance of new grapevine rootstock hybrids. Journal of Environmental Biology32(5), 543.
  49. Peñuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing14(10), 1887-1905.
  50. Pereria, J. S. & Chaves, M. M. (1995). Plant Responses to Drought under Climate Change in Mediterranean-type Ecosystems. In: "Global Change and Mediterranean-type Ecosystems, Ecology Studies", Moreno, J. M. and Oechel, W. C. (Eds.). Vol. 117, Springer- Verlag, Berlin. PP. 140-160.
  51. Rabiei, V., Talaei, A., Ebadi, A., Ahmadi, A. & Khosh Kholgh Sima, N.A. (2004). Physiological and morphological response of some grapevine cultivars to water stress. Ph.D. Thesis. University of Tehran, College of Agriculture and Natural Resources, Iran (In Farsi).
  52. Rasuli, V. & Golmohamadi, M. (2009). Evaluation of drought stress tolerance in grapevine cultivars of Qazvin province. Seed and Plant Improvement Journal. 25:2.349-359. (In Farsi).
  53. Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1991). Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell & Environment14(3), 251-259.
  54. Sairam, R. K., Chandrasekhar, V. & Srivastava, G. C. (2001). Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biologia Plantarum44(1), 89-94.
  55. Satisha, J., Prakash, G. S., & Venugopalan, R. (2006). Statistical modeling of the effect of physio-biochemical parameters on water use efficiency of grape varieties, rootstocks and their stionic combinations under moisture stress conditions. Turkish Journal of Agriculture and Forestry30(4), 261-271.
  56. Schultz, H. R. (2003). Differences in hydraulic architecture account for near‐isohydric and anisohydric behaviour of two field‐grown Vitis vinifera cultivars during drought. Plant, Cell & Environment26(8), 1393-1405.
  57. Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2014). The interaction between rootstocks and cultivars (Vitis vinifera) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research20(1), 1-14.
  58. R., Sampaio, T.L., Pinkertorn, J. and Vasconcelos, M. C. 2004. Grapevine rootstocks for oregan vineyards. Extension Service Oregan State University. pp.201-209
  59. Soar, C. J., Dry, P. R., & Loveys, B. R. (2006). Scion photosynthesis and leaf gas exchange in Vitis vinifera cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Australian Journal of Grape and Wine Research12(2), 82-96.
  60. Tandonnet, J. P., Cookson, S. J., Vivin, P., & Ollat, N. (2010). Scion genotype controls biomass allocation and root development in grafted grapevine. Australian Journal of Grape and Wine Research16(2), 290-300.
  61. Tardieu, F., Granier, C., & Muller, B. (1999). Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate? The New Phytologist143(1), 33-43.
  62. Tiaz, L. & Zeiger, E. (1998). Plant physiology. (2nd) Sinauer Associates Inc., Massachusetts.
  63. Tomás, M., Medrano, H., Pou, A., Escalona, J. M., Martorell, S., Ribas‐Carbó, M., & Flexas, J. (2012). Water‐use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole‐plant level. Australian Journal of Grape and Wine Research18(2), 164-172.
  64. Tramontini, S., Vitali, M., Centioni, L., Schubert, A., & Lovisolo, C. (2013). Rootstock control of scion response to water stress in grapevine. Environmental and Experimental Botany93, 20-26.
  65. Tsegay, D., Amsalem, D., Almeida, M., & Crandles, M. (2014). Responses of grapevine rootstocks to drought stress. International Journal of Plant Physiology and Biochemistry6(1), 1-6.
  66. Vandeleur, R. K., Mayo, G., Shelden, M. C., Gilliham, M., Kaiser, B. N., & Tyerman, S. D. (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology149(1), 445-460.
  67. Villar-Salvador, P., Planelles, R., Oliet, J., Peñuelas-Rubira, J. L., Jacobs, D. F., & González, M. (2004). Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiology24(10), 1147-1155.
  68. Winkel, T., & Rambal, S. (1993). Influence of water stress on grapevines growing in the field: from leaf to whole-plant response. Functional Plant Biology20(2), 143-157.
  69. Yan, Y. H., Li, J. L., Zhang, X. Q., Yang, W. Y., Wan, Y., Ma, Y. M., & Huang, L. K. (2014). Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS One9(3), e90700. from https://doi.org/10.1371/journal.pone.0090700
  70. Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2000). Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sensing of Environment74(3), 596-608.
  71. Zulini, L., Rubinigg, M. I., Zorer, R., & Bertamini, M. (2005). Effects of drought stress on chlorophyll fluorescence and photosynthetic pigments in grapevine leaves (Vitis viniferaSultana). In International Workshop on Advances in Grapevine and Wine Research, Venosa, Italy, 754(pp. 289-294).