اثر کم‌آبیاری بعد از شروع رنگ‌گیری بر عمکلرد، کیفیت حبه‌ها و کارایی مصرف آب انگور رقم های ‏کشمشی و صاحبی ‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پردیس دانشگاهی دانشگاه گیلان، رشت، ایران‏

2 استاد، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانشیار، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

در این پژوهش، تاثیر تیمار کم­آبیاری پس از شروع رنگ­گیری بر عملکرد و کیفیت حبه­های انگور رقم های کشمشی و صاحبی به‌صورت آزمایش اسپلیت پلات در قالب طرح بلوک‌های کامل تصادفی ارزیابی شد. تیمارها شامل آبیاری 100 درصد نیاز تبخیر و تعرق گیاه (شاهد) و کم‌آبیاری در سه سطح 40، 60 و 80 درصد از شاهد پس از تغییر رنگ حبه­ها تا برداشت بودند. نتایج نشان داد بین تیمار شاهد و کم­آبیاری80 درصد تفاوت معنی­داری از نظر عملکرد، میانگین وزن حبه­ها و خوشه­ها مشاهده نشد، اما سطوح 40 و 60 درصد کم‌آبیاری به­ترتیب باعث افت 22 و 37 درصدی عملکرد حبه­ها نسبت به شاهد شد. تیمار 40 درصد کم‌آبیاری باعث افزایش قند در رقم کشمشی شد، اما در رقم صاحبی کم‌آبیاری باعث کاهش قند گردید. به­علاوه، کم‌آبیاری باعث کاهش نسبت قند به اسید گردید. بالاترین مقدار فنل ‌کل در رقم کشمشی در تیمار کم­آبیاری80 درصد و در رقم صاحبی در تیمار 40 درصد مشاهده شد. فعالیت آنتی‌اکسیدانی رقم کشمشی و صاحبی به‌ترتیب 45 و 34 درصد نسبت به شاهد در تیمار 40 و 80 درصد افزایش یافت. تیمار کم‌آبیاری 80 درصد توانست باعث کاهش مصرف آب تا 20 درصد در مقایسه با شاهد شود، بدون آنکه کاهش معنی­دار در کارایی مصرف آب دیده شود. به‌طورکلی، کم­آبیاری 80 درصد برای حفظ عملکرد رقم های انگور کشمشی و صاحبی بدون تأثیر سوء بر کیفیت میوه توصیه می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of post-veraison deficit irrigation on berries yield, quality and water use ‎efficiency of grape cvs‏.‏‎ Keshmeshi and Sahebi ‎

نویسندگان [English]

  • Marjan Ashori 1
  • Mahmood Ghasemnezhad 2
  • Mohammad Hassan Bigouei 3
1 Ph.D. Candidate, University Campus, University of Guilan, Rasht, Iran
2 Professor, Faculty of Agriculture, University of Guilan, Rasht, Iran
3 Associate Professor, Faculty of Agriculture, University of Guilan, Rasht, Iran
چکیده [English]

In this study, the effect of different post-veraison deficit irrigation treatments on yield and berry quality of grape cvs. ‘Keshmeshi’ and ‘Sahebi was evaluated in a split plot experiment with a randomized complete block design. The treatments were control, irrigated at 100% of crop evapotranspiration (ETc), and deficit irrigation at 80, 60 and 40% of control during post-veraison till harvesting. Results showed that no significant difference was found between control and 80 deficit irrigation for berry yield, mean berries and cluster weight, but deficit irrigation at 60 and 40 % decreased berry yield up to 22 and 37%,  respectively as compared to control. The deficit irrigation at 40% increased TSS in Keshmeshi, but in Sahebi cultivar, deficit irrigation resulted to decrease TSS. Furthermore, deficit irrigation also decreased TSS to TA ratio. The highest phenolic content, which found in Keshmeshi and Sahebi cultivars at 80% deficit irrigation was 60 and 40% more than control. The antioxidant activity of Keshmeshi and Sahebi cultivars was increased 45 and 34% as compared to control with 80 and 40% deficit irrigation. Deficit irrigation at 80% of control could save water up to 20%, without reducing water use efficiency. In general, 80% deficit irrigation might be sufficient to maintain yield potential of Keshmeshi and Sahebi cultivars, without significant loss in grape quality.

کلیدواژه‌ها [English]

  • Antioxidant
  • phenol content
  • water use efficiency
  • yield
  1. Acevedo-Opazo, C., Ortega-Farias, S. & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956-964.
  2. Aragüés, R., Medina, E. T., Clavería, I., Martínez-Cob, A. & Faci, J. (2014). Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters. Agricultural Water Management, 134, 84-93.
  3. Araujo, F., Williams, L. E., Grimes, D. W. & Matthews, M. A. (1995). A comparative study of young ‘Thompson Seedless’ grapevines under drip and furrow irrigation. I. Root and soil water distributions. Scientia Horticulturae, 60(3), 235-249.
  4. Chalmers, D.J., Mitchell, P.D. & Van Heek, L. (1981). Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning [Trickle irrigation]. Journal-American Society for Horticultural Science (USA), 106, 307-312.
  5. Chaves, M. M., Santos, T. P., Souza, C. R. D., Ortuño, M. F., Rodrigues, M. L., Lopes, C. M. & Pereira, J. S. (2007). Deficit irrigation in grapevine improves water use efficiency while controlling vigor and production quality. Annals of Applied Biology, 150(2), 237-252.
  6. Cifre, J., Bota, J., Escalona, J. M., Medrano, H. & Flexas, J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera): An open gate to improve water-use efficiency?. Agriculture, Ecosystems & Environment, 106(2), 159-170.
  7. Conesa, M. R., Falagán, N., José, M., Aguayo, E., Domingo, R. & Pastor, A. P. (2016). Post-version deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes. Agricultural Water Management, 163, 9-18.
  8. Coombe, B. G. (1992). Research on development and ripening of the grape berry. American Journal of Enology and Viticulture, 43(1), 101-110.
  9. Di Vaio, C., Cirillo, C., Boselli, M. & Masi, E. (2001). Dry matter accumulation and partitioning of Cabernet Sauvignon pot-grown vines under different water regimes. Advances in Horticultural Science, 15(1-4), 25-30.
  10. Dolati Baneh, H. & Norjo, A. (2012). Effect of deficit irrigation on quantitative and quality traits of fruit and water productivity of three grapevine cultivars. Seed and Plant Production Journal, 27 (4), 435-450. (In Farsi).
  11. Ezzhaouani, A., Valancogne, C., Pieri, P., Amalak, T. & Gaudillere, J. (2007). Water economy by Italia grapevines under different irrigation treatments in a Mediterranean climate. Journal International des Sciences de la Vigne et du Vin, 41(3), 131-139.
  12. Faci, J. M., Blanco, O., Medina, E. T. & Martínez-Cob, A. (2014). Effect of post version regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agricultural Water management, 134, 73-83.
  13. (2014). databank is available on Internet online URL: http://faostat3.fao.org
  14. Goodwin, I. & Jerie, P. (1992). Regulated deficit irrigation: from concept to practice. Australian and New Zealand Wine Industry Journal, 7, 258-261.
  15. Hamedi, S., Mehregan, A. & Malakoti, M. J. (2003). The role of balanced nutrition in reducing the adverse effect of drought on plants. Technical Publications, Soil and Water Research Institute, Tehran, Iran. 12, 11-117. (In Farsi).
  16. Król, A., Amarowicz, R. & Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera) under continuous of long-term drought stress. Acta Physiologiae Plantarum36(6), 1491-1499.
  17. Kyraleou, M., Koundouras, S., Kallithraka, S., Theodorou, N., Proxenia, N. & Kotseridis, Y. (2016). Effect of irrigation regime on anthocyanin content and antioxidant activity of Vitis vinifera cv. Syrah grapes under semiarid conditions. Journal of the Science of Food and Agriculture96(3), 988-996.
  18. Lanari, V., Palliotti, A., Sabbatini, P., Howell, G. S. & Silvestroni, O. (2014). Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown ‘Sangiovese’ (Vitis vinifera) grapevines. Scientia Horticulturae, 179, 239-247.
  19. McCarthy, M. G., Loveys, B. R., Dry, P. R. & Stoll, M. (2002). Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines. Deficit irrigation practices, FAO Water Reports, 22, 79-87.
  20. Medrano, H., Escalona, J. M., Bota, J., Gulías, J. & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89(7), 895-905.
  21. Miali, G. (1984). The effect of time of irrigation on most quality in four wine grapes cultivars in Tavoliere Dipuylia. Vigenevini, 11(7), 23- 31.
  22. Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera Shiraz. American Journal of Enology and Viticulture, 53(4), 261-267.
  23. Pellegrino, A., Lebon, E., Simoneuo, T. & Wery, J. (2005). Towards a simple indicator of water stress in grapevine (Vitis vinifera) based on the differential sensitivities of vegetative growth components. Australian Journal of Grape and Wine Research, 11(3), 306-315.
  24. Pinillos, V., Chiamolera, F. M., Ortiz, J. F., Hueso, J. J. & Cuevas, J. (2016). Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color. Agricultural Water Management, 165, 181-189.
  25. Rabiei, V., Talaie, A., Peterlonger, E., Ebadi, A. & Ahmadi, A. (2003). Effect of late season deficit irrigation on fruit composition in grape (Vitis vinifera ) cv. Merlot. Iranian Journal of Agricultural Science, 34, 961- 968 (In Farsi).
  26. Romero, P., Gil-Muñoz, R., Amor, F. M., Valdés, E., Fernández, J. I. & Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101.
  27. Santesteban, L. G., Miranda, C. & Royo, J. B. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera cv.‘Tempranillo’. Agricultural Water Management, 98(7), 1171-1179.
  28. Sepaskhah, A., Tavakoli, A. & Mousavi, S. (2004). Principles and application for deficit irrigation. Publications of the National Committee of deficit irrigation and drainage, Iran. (In Farsi).
  29. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  30. Soukhtesaraee, R., Ebadi, A., Salami, S. A. & Lesani, H. (2017). Evaluation of oxidative parameters in three grapevine cultivars under drought stress. Iranian Journal of Horticultural Science, 48(1), 85-98. (In Farsi).
  31. Stewart, B. A. & Nielsen, D. R. (1990). Irrigation of agricultural crops. (Vol. 30). American Society of Agronomy. 1246.
  32. Tangolar, S. G., Tangolar, S., Tarim, G., Kelebek, H. & Topcu, S. (2015). The Effects of bud load and applied water amounts on the biochemical composition of the 'Narince' Grape variety. Notulae Botanicae Horti Agrobotanici Cluj-Napoca43(2), 380-387.
  33. Talaei, A., Ghaderi, N., Ebadi, A. & Lesani, H. (2011). Biochemical responses of Grape cvs. Sahani and Bidane-Sefid, subjected to progressive drought. Iranian Journal of Horticultural Science, 42(3), 301-308. (In Farsi).
  34. Taghadosinia, F., Ghahremani, Z., Barzegar, T, & Aelaei, M. )2019(. Effect of deficit irrigation at different growth stages of two Iranian melon accessions ‎on growth, yield, fruit quality and water use efficiency. Iranian Journal of Horticultural Science, 51(2), 503-515. (In Farsi).
  35. Van Leeuwen, C., Friant, P., Jaeck, M. E., Kuhn, S. & Lavialle, O. (2004). Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status. Joint International Conference on Viticultural Zoning, 433-439.
  36. Werner, P. C., Gerstengarbe, F. W., Fraedrich, K. & Oesterle, H. (2000). Recent climate change in the North Atlantic/European sector. International Journal of Climatology, 20(5), 463-471.
  37. Zabihi, H. R. & Azarpajouh, E. (2004). Grape response to different soil moisture regimes. Journal of Soil and Water Science, 18(10), 34-39.
  38. Zsófi, Z., Villangó, S., Pálfi, Z. & Pálfi, X. (2015). Combined effect of berry size and postveraison water deficit on grape phenolic maturity and berry texture characteristics (Vitis vinifera cv. Portugieser). Vitis, 54, 161-168.