القای کالوس و مطالعه تولید رزمارینیک‎‌‎اسید در کشت کالوس مریم‌گلی مزرعه‎‌‎روی ‏(‏Salvia nemorosa L.‎‏)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

4 دانشیار، پژوهشکده گیاهان دارویی، دانشگاه شهیدبهشتی، تهران، ایران

5 استادیار، دانشکده علوم پایه، دانشگاه قم، قم، ایران

چکیده

رزمارینیک­اسید ترکیب دارویی مهم و دارای فعالیت­های بیولوژیکی متعددی همچون آنتی­اکسیدانی، آنتی­موتاژن، ضد‌باکتری، ضد‌التهاب، ضد‌‌‌حساسیت و ضد‌آلزایمر می­باشد. در این پژوهش کالوس‌زایی و میزان تجمع رزمارینیک‌اسید در گیاه مریم‌گلی (کالوس، گیاهچه سترون و برگ گیاه مادری) بررسی شد. برای این منظور ریزنمونه­های برگی در محیط کشتMS  با ترکیبات هورمونی شامل 2,4-D (mgL-1 صفر، 5/0، 1، 2 و 5) و دو نوع سیتوکینین BA و Kin با غلظت­های ( mgL-15/0، 1 و 2) کشت گردید و درصد کالوس‌زایی، وزن تر، بافت و رنگ کالوس ارزیابی شدند. بیشترین درصد کالوس‌زایی (100%) در 3 تیمار حاوی mgL-1 2,4-D 5/0 و BAmgL-1 2،mgL-1 2,4-D  1 و mgL-1 BA 1،2,4-D  mgL-12 و  mgL-1 Kin2 مشاهده شد. هم‌چنین بالاترین وزن‌تر کالوس ( g3/1) در محیط کشت MS دارای 2,4-DmgL-11 و mgL-1 BA 1 به‌دست آمد. میزان رزمارینیک­اسید کالوس­ها هم مقدار  mg gDW-15/1 بود که به‌طور معنی­داری دو برابر بیشتر از مقدار رزمارینیک­اسید برگ‌های گیاه بود. بنابراین کشت کالوس مریم‌گلی مزرعه‌روی در محیط کشت MS دارای 2,4-DmgL-1 1 و mgL-1 BA 1 را می توان به‌عنوان روشی جایگزین و سودمند جهت تولید رزمارینیک‌اسید به‌کار برد.

کلیدواژه‌ها


عنوان مقاله [English]

Callus induction and rosmarinic acid accumulation in callus culture of ‎Salvia nemorosa L. ‎

نویسندگان [English]

  • Fatemeh Khoshsokhan 1
  • Mesbah Babalar 2
  • Alireza Salami 3
  • Mohamadhossein Mirjalili 4
  • Reza Sheikhakbari Mehr 5
1 Ph. D. Candidate, College of Agriculture & Natural Resources, University of Tehran, ‎Karaj, Iran
2 Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
4 Associate Professor, Research Institute of Medicinal Plants, Shahid Beheshti University, Tehran, Iran
5 Assistant Professor, Faculty of Science, University of Qom, Qom, Iran‎
چکیده [English]

Rosmarinic acid (RA) is a well known valuable phenolic compound because of its wide spectrum of biological activities such as antimicrobial, anti-inflammatory, antimutagenic, antioxidant and cancer chemoprevention. In the present study, in vitro callus induction and production of RA in Salvia nemorosa (callus culture, in vitro seedling, mother plant) have been studied. For this purpose, callus induction was achieved from young leaf explants cultured on MS medium supplemented with different concentrations of 2,4-D (0, 0.5, 1, 2 and 5 mgL-1) solely or in combination with BAP and Kin (0.5, 1 and 2 mgL-1) and the number of different traits such as percentage of callus induction, fresh weight and type of callus (texture and color) were evaluated. The highest percentage of callus induction was achieved from 3 treatment supplemented by 5 mgL-1 2,4-D+ 2 mgL-1 BAP, 1 mgL-1 2,4-D + 1 mgL-1 BAP and 2 mgL-1 2,4-D + 2 mgL-1 Kin. Also The best fresh weight (1.31g) were obtained in MS medium containing 1 mgL-1 BAP and 1 mgL-1 2,4-D. According to the result the callus has the highest RA content with a value of 1.5 mg gdw-1 and RA accumulate in callus to amounts (2 fold) much higher than plants under field conditions. According our findings the callus culture of Salvia nemorosa L. on MS medium containing 1 mgL-1 BAP and 1 mgL-1 2,4-D provided useful method for RA production.                

کلیدواژه‌ها [English]

  • Callus culture
  • Lamiaceae
  • plant growth regulators
  • Rosmarinic acid
  • Salvia‎
  1. Abedaljasim, M.J.A., Ashwaq, S.A., Abdal-Jabbar, A.A. & Duha, M.M. (2016). Improvement of phenols production by amino acids in callus cultures of Verbascum thapsus L. American Journal of Plant Sciences, 7, 84-91.
  2. AL-Hussaini, Z.A., Yousif, S.H. & AL-Ajeely, S.A. (2015).Effect of different medium on callus induction and regeneration in potato cultivars. International Journal of Current Microbiology and Applied Sciences,4(5), 856-865.
  3. Bhat S.V., Nagasamagi, B.A. & Sivakumar, M. (2005). Chemistry of Natural Products. Narosa Publishing House, New Delhi.
  4. Canter, H.C., Thomas, H. & Ernst, E. (2005). Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology, 23, 180-184.
  5. Fattahi, B., Nazeri, V., Kalantari, S. & Bonfill, M. (2014). Identification of compounds in the essential oil and quantification of flavonoids and rosmarinic acid in Salvia reuterana Boiss. and Salvia palaestina Benth. Iranian Journal of Medicinal and Aromatic Plants, 30, 463-475. (in Farsi).
  6. Fu, CX., Xu, Y.J., Zhao, D.X. & Ma, F.S. (2006). A comparison between hairy root culture and wild plants of Sauussurea involucrate in phenylpropanoids production. Plant Cell Report, 24, 750-754.
  7. Hosseini, B., Ayyobi, N. & Fattahi, M. (2018). Study of factors affecting hairy roots induction and rosmarinic acid production in Dracocephalum kotschyi Boiss. Iranian Journal of Horticaltural Sciences, 49:255-269. (in Farsi)
  8. Hosseinzadeh, H. & Amel, S. (2000). Anti-nociceptive effects of the aerial parts of Salvia nemorosa L. extracts in mice. Archives of Iranian Medicine, 3, 81-84.
  9. Janicsak, G., Matheh, I., Vilmos, M.V. & Gerald, B. (1999). Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochemical Systematics and Ecology, 27, 733-738.
  10. Jamzad, Z. (2012). Lamaiceae. In: Assadi, M., Maassoumi, A. & Mozaffarian, V. (eds). Flora of Iran. Vol. 76. Research Institute of Forests & Rangelands, Tehran. (in Farsi)
  11. Karam, N.S., Jawad, F.M., Arikat, N.A. & Shibli R.A. (2003). Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue and Organ Culture, 73, 117-121.
  12. Khojasteh, A., Mirjalili, M.H., Hidalgo, D., Purificacio, n. & Palazon, J. (2014). New trends in biotechnological production of rosmarinic acid. Biotechnology Letters, 36, 2393-2406.
  13. Kintzios, S., Nikolaou, A. & Skoula, M. (1999). Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Reports, 18, 462-466.
  14. Kintzios, S., Makri, O., Panagiotopoulos, E. & Scapeti, M. (2003). In-vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). Biotechnology Letters, 25, 405-408.
  15. Lee, W.L. & Chan, L.K. (2004). Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell Tissue and Organ Culture, 78, 101-106.
  16. Li, L.N. (1997). Water soluble active components of Salvia miltiorrhiza and related plants. Journal of Chinese Pharmaceutical Sciences, 6, 57-64.
  17. Modarres, M., Lahooti, M., Asili, J., Kafi, M. & Ramazani, A. (2013). Simultaneous determination of rosmarinic acid, salvianolic acid b and caffeic acid in Salvia leriifolia benth. root, leaf and callus extracts using a high-performance liquid chromatography with diode-array detection technique. Journal of Plant Process and Function, 37, 1721-1730. (in Farsi)
  18. Paek, K.Y, Chakrabarty, D. & Hahn E.J. (2004). Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell, Tissue and Organ Culture, 81, 287-300.
  19. Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hücherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C. & Wolters, S. (2009). Evolution of rosmarinic acid biosynthesis. Phytochemistry, 70, 1663-1679.
  20. Philipson, J.D. (1990). Plants as source of valuable products. In: B.V. Chalwood and M.J. Rhodes (Eds.), Secondary products from plant tissue culture, Oxford, Clarendon Press. pp. 1-21.
  21. Pierik, R.I.M. (1987). Preparation and composition of nutrient media. In: Pierik, R.I.M. (Ed.), In vitro Culture of Higher Plants. Martinus Nijhoff Publishers, Dordrecht, the Netherlands, pp. 45-82.
  22. Sahraroo, A., Babalar, M., Mirjalili, M., Moghaddam, M. & Nejad Ebrahimi, S. (2014). In-vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iranian Journal of Pharmaceutical Research, 13 (4), 1447-1456.
  23. Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B. & Fernandes- Ferreira, M. (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). Journal of Plant Physiology, 160, 1025-1032.
  24. Scarpati, M.L. & Oriente, G. (1958). Isolamento e costituzione dell’acid rosmarinico (dal rosmarinus off.). Ric. Sci., 28, 2329-2333.
  25. Tripathi L & Tripathi JN. (2003). Role of biotechnology in medicinal plants. Tropical Journal of Pharmaceutical Research, 2, 243-253.
  26. Takeda, Y., Zhang, H., Matsumoto, T., Otsuka, H., Oosio, Y., Honda, G., Tabata, M., Fujita, T., Sun, H., Sezik, E. & Yesilada, E. (1997). Megastigmane glycosides from Salvia nemorosa. Phytochemistry, 44, 117-120.
  27. Verpoorte, R., Caontin, A. & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1, 13-25.
  28. Wyk, B.E.V. & Wink, M. (2005). Medicinal plants of the world. Pretoria, Briza.  South Africa
  29. Yesil-Celiktas, O., Gurel, A. & Vardar-Sukan, F. (2010). Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Research Network, 37, 1-54.
  30. Zamani, M, Moradi, H.Chalavi, V. & Kazemitabar S.K. (2019). Effect of Salicylic Asid and Methyle Jasmonat Elicitors on Hypericin production in (Hypericum perforatum L.) cv. Topas Callus culture. Iranian Journal of Horticultural Science, 49, 915-923. (in Farsi)