ریز ازدیادی گونه ‏Lycium depressum، درختچه بومی ارزشمند قابل استفاده در فضای سبز شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشجوی کارشناسی ارشد، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشجوی دکتری، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 استاد، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

گیاه Lycium depressum درختچه‌ای خاردار متعلق به تیره سولاناسه و بومی ایران می‌باشد که قابلیت تحمل بالایی به خشکی و شوری دارد. در این مطالعه دست‌یابی به پروتکل بهینه ریزازدیادی گیاه لیسیوم برای اولین بار مورد ارزیابی قرار گرفت. در این تحقیق ابتدا تأثیر هورمون‌های بنزیل آمینو پورین (BAP) و تیدیازورون (TDZ) در ترکیب با نفتالین استیک اسید (NAA) در میزان پرآوری گیاه لیسیوم بررسی شد. سپس اثر ترکیبات آلی و معدنی مختلف شامل میواینوزیتول، کازئین هیدرولیزات، پرولین، آهن FeEDDHA و همچنین کلرید کلسیم بر بهبود پرآوری و کیفیت گیاهچه‌های لیسیوم مورد ارزیابی قرار گرفت. بر اساس نتایج این آزمایش، محیط کشت موراشیگ و اسکوگ (MS) به همراه 5/0 میلی‌گرم بر لیتر BAP به‌عنوان بهترین محیط کشت جهت پرآوری شاخساره شناخته شد. علاوه بر این، افزودن میواینوزیتول تا میزان 200 میلی‌گرم بر لیتر به محیط کشت، تولید شاخساره را در مرحله پرآوری بهبود بخشید و منجر به تولید شاخساره‌های با کیفیت بالاتر و برگ درشت تر گردید. در مرحله ریشه‌زایی نیز بیشترین تعداد و طول ریشه در تیمار ۳/۰ میلی‌گرم در لیتر IBA به‌دست آمد. نود و پنج درصد ازگیاهچه‌های ریشه‌دار شده به طور موفق در اتاقک رشد سازگار شدند. در مجموع نتایج این تحقیق منجر به دست‌یابی به‌روش بهینه ریزازدیادی درختچه بومی لیسیوم گردید. این دستاورد می‌تواند نقش بسیار مهمی در پیش‌برد انجام تحقیقات گسترده‌تر روی سایر جنبه‌های اهلی‌سازی این گیاه دارویی با ارزش و قابل استفاده در فضای سبز شهری داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Micropropagation of Lycium depressum, a promising native shrub for urban ‎landscape

نویسندگان [English]

  • Leila Samiei 1
  • Homa Mirshahi 2
  • Mahboubeh Davoudi Pahnehkolayi 3
  • Ali Tehranifar 4
1 Assistant Professor, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2 M. Sc. Student, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 Ph. D. Candidate, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 Professor, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Lycium depressum, a prickly shrub from Solanaceae family, is a native species from Iran with high salinity and drought tolerance ability. In this study, the establishments of an efficient micropropagation method for L. desressum was investigated. In the first experiment, the effects of benzylaminoporin (BAP) and thiadiazuron (TDZ) in combination with naphthalene acetic acid (NAA) were investigated. In the second experiment, the effect of various organic and inorganic compounds including myo-inositol, casein hydrolysate, proline, FeEDDHA, as well as calcium chloride on the improvement of proliferation and quality of in vitro regenerated shoots were evaluated. According to the results of these experiments, BAP at low concentration (0.5 mg / L) was regarded as the best treatment for in vitro proliferation of L. depressum. Moreover, the maximum leaf number was achieved in this treatment. In addition, increasing the concentration of myo-inositol to 200 mg/l in MS medium, enhanced shoot proliferation, leaf size and quality of regenerated shoots. The highest root number and length was obtained on full strength MS medium supplemented with 0.3 mg/l IBA. Following rooting, the developed plantlets were hardened and established successfully in culture room with 95% survival rate. Overall, this experiment resulted in an efficient micropropagation protocol for L. depressum. The findings of this study can facilitate the path to more extensive research program on various aspects of domestication of this valuable medicinal and landscape species.

کلیدواژه‌ها [English]

  • Casein hydrolysate
  • FeEDDHA
  • myo-inositol
  • proliferation
  1. Abay, S. & Pirlak, L. (2017). Effects of iron sulfate, zinc sulfate, iron chelate, powder sulphur and humic acid applications on vegetative growth of sweet cherry (Prunus avium L.).  Erwerbs-Obstbau 59(1), 71-75.
  2. Bai, Y. & Qu, R. (2001). Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescue. Plant Breeding, 120(3), 239-242.
  3. Bairu, M.W., Stirk, W.A., Dolezal, K. & Van Staden, J.  (2007). Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell, Tissue and Organ Culture, 90(1), 15-23.
  4. Bhatia, P. & Ashwath, N. (2008). Improving the quality of in vitro culture shoots of tomato. Biotechnology, 7(2), 188-193.
  5. Bosela, M.J. & Michler, C.  (2008). Media effects on black walnut (Juglans nigra L.) shoot culture growth in vitro: evaluation of multiple nutrient formulations and cytokinin types. In Vitro Cellular and Developmental Biology-Plant,44(4), 316-329.
  6. Carrillo-Bermejo, E.A., Herrera-Alamillo, M.A., González-Mendoza, V.M., Pereira-Santana, A., Keb-Llanes, M. A. & Castaño, E. (2018). Comparison of two different micropropagation systems of Saccharum officinarum L. and expression analysis of PIP2; 1 and EIN3 genes as efficiency system indicators. Plant Cell, Tissue and Organ Culture, 136(2), 399-405.
  7. Dalton, C., Iqbal, K. & Turner, D. (1983). Iron phosphate precipitation in Murashige and Skoog media. Physiologia Plantarum, 57(4), 472-476.
  8. Danova, K., Čellárová, E., Macková, A., Daxnerová, Z. & Kapchina-Toteva, V. (2010). In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitro Cellular and Developmental Biology-Plant, 46(5), 422-429.
  9. Debnath, S. C. & McRae, K.B. (2001). An efficient in vitro shoot propagation of cranberry (Vaccinium macrocarpon Ait.) by axillary bud proliferation. In Vitro Cellular and Developmental Biology-Plant,37(2), 243-249.
  10. Fatima, N., Ahmad, N. & Anis, M. (2011). Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions. Journal of Plant Physiology and Biochemistry, 49(12), 1465-1471.
  11. Fira, A., Joshee, N., Cristea, V., Simu, M., Hâr, M. & Pamfil, D., (2016). Optimization of micropropagation protocol for Goji Berry (Lycium barbarum L.). Bulletin UASVM Horticulture, 73(2).
  12. Esmaeili, G., Azizi, M., Aroei, H. & Samiei, L. (2016). Micropropagation of Astragalus adscendens: a source of gaz-angabin manna in Iran (Persian manna). Journal of Agricultural Science and Technology,18, 741-750
  13. Ghasemi, P. A., Momeni, M. & Bahmani, M. (2013). Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan districts, Ilam province, Iran. African Journal of Traditional, Complementary and Alternative Medicines, 10(2), 368-385.
  14. Ghimire, B., Seong, E., Goh, E., Kim, N., Kang, W. & Kim, E. (2010). High-frequency direct shoot regeneration from Drymaria cordata Willd. leaves. Plant Cell, Tissue and Organ Culture,100(2), 209-217.
  15. Gong, G., Dang, T., Deng, Y., Han, J., Zou, Z., Jing, S. & Wang, Z. (2018). Physicochemical properties and biological activities of polysaccharides from Lycium barbarum prepared by fractional precipitation. International Journal of Biological Macromolecules, 109, 611-618.
  16. Hussain, S. A., Ahmad, N. & Anis, M. (2018). Synergetic effect of TDZ and BA on minimizing the post-exposure effects on axillary shoot proliferation and assessment of genetic fidelity in Rauvolfia tetraphylla (L.). Journal of Rendiconti Lincei. Scienze Fisiche et Naturali, 29(1), 109-115.
  17. Khatamsaz, M. (1998). Flora of Iran. Solanaceae, vol. 24. Research Institute of Forest and Rangelands. (in Farsi)
  18. Khvatkov, P., Chernobrovkina, M., Okuneva, A. & Dolgov, S. (2018). Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models. Plant Cell, Tissue and Organ Culture, 136(1), 85-100.
  19. Kiviharju, E., Moisander, S. & Laurila, J. (2005). Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue and Organ Culture, 81(1), 1-9.
  20. Kumar, N. & Reddy, M. P. (2010). Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Annals of Applied Biology, 156(3), 367-375.
  21. Licea-Moreno, R. J., Contreras, A., Morales, A. V., Urban, I., Daquinta, M. & Gomez, L. (2015). Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell, Tissue and Organ Culture, 123(1), 143-154.
  22. Loureiro, J., Capelo, A., Brito, G., Rodriguez, E., Silva, S., Pinto, G. & Santos, C. (2007). Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biologia Plantarum, 51(1), 7-14.
  23. Lu, C. Y. (1993). The use of thidiazuron in tissue culture. In Vitro Cellular and Developmental Biology-Plant, 29(2), 92-96.
  24. Maseda, P. H., Lemcoff, J. H., Murúa, M., Frayssinet, N. & Carceller, M. S. (2004). Microcutting culture and morpho-physiological changes during acclimation in two Lycium chilense cytotypes. Biocell, 28(3), 271-277.
  25. Mohseni, N., Sepehr, A., Hoseinzadeh, R. & Golzarian, M. (1395). Effects of adaphic variance on the equilibrium threshold dynamics of the dry ecosystem. Earth Science Researches26, 101-116.
  26. Monney, M. A. D., Amissah, N. & Blay, E. (2016). Influence of BA and IBA or NAA combinations on micropropagation of Cryptolepis sanguinolentaAmerican Journal of Plant Sciences, 7(03), 572.
  27. Mozaffarian, V. (2005). Trees and shrubs of Iran. Farhang Moaser Publication. (in Farsi)
  28. Nas, M. N. (2004). A hypothesis for the development of a defined tissue culture medium of higher plants and in vitro micropropagation of hybrid hazelnut. Scientia Horticulturae, 101(1-2), 189-200.
  29. Negi, D. & Saxena, S. (2011). Micropropagation of Bambusa balcooa Roxb. through axillary shoot proliferation. In Vitro Cellular and Developmental Biology-Plant, 47(5), 604-610.
  30. Pandey, A. & Tamta, S. (2014). In vitro propagation of the important tasar oak (Quercus serrata Thunb.) by casein hydrolysate promoted high frequency shoot proliferation. Journal of Sustainable Forestry, 33(6), 590-603.
  31. Patel, B., Gami, B., Patel, N. & Bariya, V. (2015). One step pre-hardening micropropagation of Bambusa balcooa Roxb. Journal of Phytology, 7, 1-9.
  32. Poothong, S. & Reed, B. M. (2014). Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Scientia Horticulturae, 165, 132-141.
  33. Preece, J. E., Huetteman, C. A., Ashby, W. C. & Roth, P. L. (1991). Micro and cutting propagation of silver maple. I. Results with adult and juvenile propagules. Journal of the American Society for Horticultural Science, 116(1), 142-148.
  34. Rai, M. K., Jaiswal, V. S. & Jaiswal, U. (2009). Shoot multiplication and plant regeneration of guava (Psidium guajava L.) from nodal explants of in vitro raised plantlets. Journal of Fruit and Ornamental Plant Research, 17(1), 29-38.
  35. Samiei, L., Panhehkolayi, M. D., Mirshahi, H. & Karimian, Z. (2018). A simple and efficient micropropagation protocol for new Guinea impatiens (Impatiens hawkeri). Journal of Environmental Biology, 39(4), 454-458.
  36. Sarropoulou, V., Dimassi-Theriou, K. & Therios, I. (2015). Effects of exogenous indole-3-butyric acid and myo-inositol on in vitro rooting, vegetative growth and biochemical changes in leaves and roots in the sweet cherry rootstock MxM 14 using shoot tip explants. Theoretical and Experimental Plant Physiology, 27(3-4), 191-201.
  37. Shukla, M. R., Jones, A. M. P., Sullivan, J. A., Liu, C., Gosling, S. & Saxena, P. K. (2012). In vitro conservation of American elm (Ulmus americana): potential role of auxin metabolism in sustained plant proliferation. Canadian Journal of Forest Research, 42(4), 686-697.
  38. Silvestri, C., Sabbatini, G., Marangelli, F., Rugini, E. & Cristofori, V. (2018). Micropropagation and ex vitro rooting of wolfberry. HortScience, 53(10), 1494-1499.
  39. Sujatha, D., Chithakari, R., Raghuvardhan, L., Prasad, B. & Khan, G. (2013). In vitro plantlet regeneration and genetic transformation of sponge gourd (Luffa cylindrica L.). African Journal of Plant Science, 7(6), 244-252.
  40. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2013). In vitro assessment of antioxidant and antibacterial activities of six edible plants from Iran. Journal of Acupuncture and Meridian Studies, 6(3), 159-162.
  41. Wood, H. N. & Braun, A. C. (1961). Studies on the regulation of certain essential biosynthetic systems in normal and crown-gall tumor cells. In: Proceedings of the National Academy of Sciences, 47(12), 1907-1913.
  42. Yadav, M. K., Gaur, A. K. & Garg, G. K. (2003). Development of suitable protocol to overcome hyperhydricity in carnation during micropropagation. Plant Cell, Tissue and Organ Culture, 72(2), 153-156.