روابط تکاملی برخی از گونه‌های بومادران (‏Achillea spp.‎‏) متعلق به نواحی مختلف ایران‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

ارزیابی روابط فیلوژنتیکی در 10 گونه مختلف از گیاه بومادران متعلق به نواحی جغرافیایی مختلف ایران با استفاده از یک آغازگر ITS4 و یک آغازگر MatK 390 انجام گرفت. دو آغازگر MatK 390 و ITS4 در تمامی 10 گونه تکثیر یافتند و بنابراین توالی­یابی شدند. بر مبنای درخت فیلوژنتیکی حاصل از MatK 390 و ترسیم شده با روش حداکثر درست‌نمایی، تمامی 10 گونه جنس Achellia در یک گروه منوفایلتیک قرار گرفتند و دو گروه خارجی (Tanacetum vulgare و T. parthenium) نیز در یک کلاد جداگانه جای گرفتند. همچنین بر اساس درخت فیلوژنتیکی حاصل از نشانگر ITS 4، 9 گونه از تمامی 10 گونه مورد مطالعه گیاه بومادران در یک گروه مجزا قرار گرفتند، درحالی‌که گونه موسوم به A. alepica همراه با چهار گروه خارجی (یعنی، T. vulgare، T. millefolium، T. macrophyllum وCotula cinerea) در کلاستر مجزای دیگری قرار گرفتند. درنهایت، نتایج این تحقیق نشان داد که از هر دو سیستم نشانگری MatK 390 و ITS 4 می‌توان برای آنالیز فیلوژنتیکی و DNA بارکدینگ در گونه­های مختلف بومادران بومی ایران استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evolutionary relationships in some selected species of Yarrow (Achillea spp.) ‎collected from various regions of Iran

نویسندگان [English]

  • Elaheh Fayyaz 1
  • Alireza Abbasi 2
  • Mohammad Reza Naghavi 3
1 Ph.D. Candidate, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran ‎
2 Associate Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran ‎
3 Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran ‎
چکیده [English]

Phylogenetic relationships were assessed in 10 different species of the Yarrow(Achillea spp.) originated from geographically different regions of Iran, using three different DNA markers namely ITS 4 and MatK 390. Both of them (MatK 390 and ITS 4) were amplified among all the 10 species, and the resultant amplicons were sequenced for further analyses. Phylogenetic tree of MatK 390 based on maximum likelihood could successfully place all the 10 species of the genus Achillea in a major cluster and outgroups (i.e., Tanacetum vulgare and T. parthenium) in the second major group. Taking phylogenetic tree of ITS 4 into account, all 9 out of 10 species of the genus Achillea were grouped into the first main cluster, while all four outgroups (i.e., T. vulgare, T. millefolium, T. macrophyllum, and Cotula cinerea) together with the one species of the genus Achillea (A. alepica) were placed in the second group. Altogether, the results of the current study demonstrated that both MatK 390 and ITS 4 are qualified enough to be utilized as a powerful DNA barcoding system and subsequently phylogenetics analysis in different species of the genus Achillea originated from geographically several regions of Iran.    

کلیدواژه‌ها [English]

  • DNA barcoding
  • DNA markers
  • phylogenetic analysis
  1. Al-Atiyat, R. & Aljumaah, R. (2014). Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing. Genetics and Molecular Research, 13(3), 6557-6568.
  2. Amin, G., Sourmaghi, M. S., Azizzadeh, M., Yassa, N. & Asgari, T. (2008). Seasonal variation of the essential oil composition of cultivated yarrow in Tehran-Iran. Journal of Essential Oil Bearing Plants, 11(6), 628-633.
  3. Arnot, D. E., Roper, C. & Bayoumi, R. A. (1993). Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates. Molecular and Biochemical Parasitology, 61(1), 15-24.
  4. Badr, A., El-Shazly, H. H., Ahmed, H. I. S., Hamouda, M., El-Khateeb, E. & Sakr, M. (2017). Genetic diversity of Achillea fragrantissima in Egypt inferred from phenotypic variations and ISSR markers associated with traits of plant size and seed yield. Plant Genetic Resources, 15(3), 239-247.
  5. Dabrovska, J. (1977). Observations of the fruit size of nine taxons from the genus Achillea L. representing natural di-, tetra-, hexa-and octaploids. Herba Pol, 28(23), 55-66.
  6. Doyle, J. J. & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(13), 39-40.
  7. Francisco‐Ortega, J., Barber, J. C., Santos‐Guerra, A., Febles‐Hernández, R. & Jansen, R. K. (2001). Origin and evolution of the endemic genera of Gonosperminae (Asteraceae: Anthemideae) from the Canary Islands: evidence from nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA. American Journal of Botany, 88(1), 161-169.
  8. Gharibi, S., Rahimmalek, M., Mirlohi, A., Majidi, M. M. & Tabatabaei, B. E. S. (2011). Assessment of genetic diversity in Achillea millefolium subsp. millefolium and Achillea millefolium subsp. elbursensis using morphological and ISSR markers. Journal of Medicinal Plants Research, 5(11), 2413-2423.
  9. Guo, Y.-P., Ehrendorfer, F. & Samuel, R. (2004). Phylogeny and systematics of Achillea (Asteraceae-Anthemideae) inferred from nrITS and plastid trnL-F DNA sequences. Taxon, 53(3), 657-672A.
  10. Hebert, P. D., Cywinska, A., Ball, S. L. & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.
  11. Huang, X. & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9(9), 868-877.
  12. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120.
  13. LÖfgren, A. (2002). Effects of isolation on distribution, fecundity, and survival in the self-incompatible Achillea millefolium (L.). Ecoscience, 9(4), 503-508.
  14. Mozaffarian, V. (1998). Dictionary of Iranian Plant Names. Farhang Moaser, Tehran. (in Farsi)
  15. Nei, M. & Kumar, S. (2000). Molecular evolution and phylogenetics: Oxford university press.
  16. Nemeth, E. (2005). Essential oil composition of species in the genus Achillea. Journal of Essential Oil Research, 17(5), 501-512.
  17. Oberprieler, C. & Vogt, R. (2000). The position of Castrilanthemum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNAtrnL/trnF IGS sequence variation. Plant Systematics and Evolution, 225(1-4), 145-170.
  18. Rahimmalek, M., Tabatabaei, B. E. S., Arzani, A. & Etemadi, N. (2009). Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP). Biochemical Systematics and Ecology, 37(4), 354-361.
  19. Rahimmalek, M., Tabatabaei, B. E. S., Arzani, A. & Khorrami, M. (2011). Development and characterization of microsatellite markers for genomic analysis of yarrow (Achillea millefolium L.). Genes & Genomics, 33(5), 475.
  20. Taheri, E., Shirzadian-Khorramabad, R., Sharifi-Sirchi, G., Sabouri, A. & Abbaszadeh, K. (2016). Assessment of Genetic Diversity of Three Yarrow's Wild Masses in Hormozgan Province Using Morphological Traits. Plant Genetic Researches, 2(2), 73-82. (in Farsi).
  21. Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Molecular Biology and Evolution, 9(4), 678-687.
  22. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
  23. Watson, L. E., Evans, T. M. & Boluarte, T. (2000). Molecular phylogeny and biogeography of tribe Anthemideae (Asteraceae), based on chloroplast gene ndhF. Molecular Phylogenetics and Evolution, 15(1), 59-69.