تأثیر پرولین بر برخی ویژگی‌های فیزیولوژیکی و بیوشیمیایی دو رقم گل حنا (‏Impatiens ‎walleriana‏) تحت تنش شوری

نوع مقاله: مقاله پژوهشی


1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه لرستان

2 استادیار و دانشیار، دانشکده کشاورزی، دانشگاه لرستان

3 دانشیار، دانشکده کشاورزی، دانشگاه لرستان


به منظور مطالعه بررسی تأثیر محلول‎پاشی پرولین بر برخی ویژگی‎های فیزیولوژیکی و بیوشیمیایی  گل حنا، آزمایشی به ‎صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. عامل اول دو رقم گل حنا (Accent premium salmon و Tempo orange)، عامل دوم محلول‌پاشی پرولین (شاهد (صفر)، 5 و 10 میلی‎مولار به‌صورت هفتگی) وعامل سوم تنش شوری در چهار سطح (شاهد (صفر)، 20، 40 و 60 میلی‎مولار کلرید سدیم به صورت آبیاری سه روز یک‌بار (90 درصد ظرفیت زراعی)) بود. نتایج نشان داد افزایش تنش شوری موجب کاهش معنی‌دار وزن تر و خشک برگ، ساقه، ریشه و کل بوته، تعداد گل، قطر گل، زمان باز شدن گل، محتوای کلروفیل a، کلروفیل b، کلروفیل کل، کارتنوئید و فعالیت آنزیم کاتالاز و از سوی دیگر باعث افزایش قابل توجهی در میزان محتوای پرولین درونی، فعالیت آنزیم‌های پراکسیداز و آسکوربات پراکسیداز در هر دو رقم گل حنا شد. در حالی که اعمال تیمار پرولین اثرات تنش را تعدیل کرد و هر دو غلظت پرولین موجب افزایش قابل توجهی در همه‏ی ویژگی‌های مورد مطالعه نسبت به شاهد شد. بیشترین فعالیت آنزیم کاتالاز و مقدار پرولین در رقم سالمون و بیشترین فعالیت آنزیم آسکوربات پراکسیداز در رقم تمپو مشاهده شد. به‌طور کلی نتایج حاصل از این مطالعه نشان داد تنش شوری در همه‏ی سطوح دارای اثرات منفی بر رشد و عملکرد در هر دو رقم گل حنا بود، در صورتی که کاربرد پرولین به‌ویژه در غلظت 10 میلی‏مولار باعث کاهش اثرات منفی تنش شوری و افزایش مقاومت گیاه به تنش شوری شد.


عنوان مقاله [English]

Effect of proline on some physiological and biochemical characteristics of two ‎cultivars of Impatiens walleriana under salt stress

نویسندگان [English]

  • Fatemeh Roozbahani 1
  • Sadegh Mousavi-Fard 2
  • Abdolhossein Rezaeinejad 3
1 M.Sc. Student, Faculty of Agriculture, Lorestan University, Khoramabad, Iran
2 Assistant Professor, Faculty of Agriculture, Lorestan University, Khoramabad, Iran
3 Associate Professor, Faculty of Agriculture, Lorestan University, Khoramabad, Iran
چکیده [English]

The aim of this study was to investigate the effect of foliar application of proline on some physiological and biochemicalcharacteristics of two cultivars of impatiens under salinity stress. The experiment was a factorial based on a completely randomized design with three replications. The first factor was two cultivars of impatiens (Accent Premium Salmon and Tempo Orange), the second factor was foliar application of proline (0 as control, 5 and 10 mM were applied weekly) and the third factor was salinity stress at four levels (0 as control, 20. 40 and 60 mM sodium chloride were applied as irrigation (90% field capacity) every three day). The results showed that increasing salinity stress significantly reduced fresh and dry weight of leaf, stem, root and total plant, time of flower opening, flower diameter, number of flower, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid content and catalase activity, and while significantly increased proline content, activity of peroxidase and ascorbate peroxidase enzymes in both cultivars of impatiens. Exogenous application of 5 and 10 mM proline have mitigated salinity stress effects and caused a significant increase in all of the studied characteristics. The highest activity of catalase and proline content was observed in Salmon cultivar, whereas the highest activity of ascorbate enzyme was observed in Tampo cultivar. In general, the results of this study indicated that all levels of salinity stress had negative effects on growth and yield of both impatiens cultivars, but proline application especially at a concentration of 10 mM reduced the effects of salinity stress and increased plant toleranceto stress.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • Salmon
  • Sodium Chloride
  • tempo
  1. Abdelhamid, M. T., Rady, M. M., Osman, A. S. h. & Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. Plants. The Journal of Horticultural Science and Biotechnology, 88, 439-446.
  2. Abdolmohammadi, S. & Omidi, J. (2017). The effect of salicylic acid on some morphological and physiological traits under salinity stress (Catharanthus roseus). Agricultural Research Journal, 9(3), 28-39. (in Farsi)
  3. Ali, Q., Ashraf, M. & Athar, H. R. (2007). Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pakistan Journal of Botany, 39(4), 1133-1144.
  4. Alvarez, S. & Sanchez‐Blanco, M. J. (2014). Long‐term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biology, 16(4), 757-764.
  5. Ashraf, M. & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(13), 266-273.
  6. Ashraf, M. & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216.
  7. Bartha, C., Fodorpataki, L., Del Carmen Martinez-Ballesta, M., Popescu, O. & Carvajal, M. (2015). Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. Journal of. Applied Botany and Food Quality, 88, 42-48.
  8. Bates, L., Waldren, R. & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  9.  Bayat, H., Namati, S. H., Tehranifar, A., Vahdati, N. & Selahvarzi Y. (2012). Effect of salicylic acid on growth and ornamental characteristics of Persian petunia (Petunia hybrida) under salt stress. Journal of Science and Technology of Greenhouse CultureSoilless Culture Research Center, 3(3), 43-51. (in Farsi)
  10. Cassaniti, C., Leonardi, C. & Flowers, T. J. (2009). The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122(4), 586-593.
  11. Chance B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
  12. Chen, H. & Jiang, J. G. (2009). Osmotic responses of Dunaliella to the changes of salinity. Journal of Cellular Physiology, 219, 251–258.
  13. Chiang, H. H. & Dadekar, A. M. (1995). Regulation of proline accumulation in Arabidopsis thaliana L. Heynh during development and in response to desiccation. Plant, Cell & Environment, (18), 1280-1290.
  14. Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. I. & De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. The Journal of Horticultural Science and Biotechnology, 91(1), 14-22.
  15. Colla, G., Rouphael, Y., Leonardi, C. & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155.
  16. Dawood, M. G., Taie, H. A. A., Nassar, R. M. A., Abdelhamid, M. T. & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54–63.
  17. Deotale, R.D., Potkile, N.N. & Dhopte, A.M. (1988). Relative changes in free amino acid contents associated with boll shedding in upland cotton cultivars and hybrids. Annual Review of Plant Physiol, 1, 94-100.
  18. De Pascale, S., Dalla Costa, L., Vallone, S., Barbieri, G. & Maggio, A. (2011). Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology, 21(3), 301-308.
  19. Dole, J. M. & Wilkins, H. (2005). Floriculture: principles and species by prentice-Hall Inc. Simon and Areview, Annals of Botany, 104.
  20. Garcia-Caparros, P. & Lao, M. T. (2018). The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae, 240, 430-439.
  21. Ghasemi ghahsare, M. & Kafi, M. (2013). Scientific and practical flowering. Razavi Publications. (in Farsi)
  22. Gomez-Bellot, M. J., Alvarez, S., Banon, S., Ortuno, M. F. & Sanchez-Blanco, M. J. (2013). Physiological mechanisms involved in the recovery of euonymus and laurustinus subjected to saline waters. Agricultural Water Management, 128, 131-139.
  23. Grey-Wilson, C. (1980). Impatiens of Africa. CRC Press.
  24. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology and Plant Molecular Biology, 51, 463–499.
  25. Heuer, B. (2003). Influence of exogenous application of proline and glycine betaine on growth of salt-stressed tomato plants. Plant Science, 165, 693-699.
  26. Hoque, A., Bhusan, D., Das, K. D., Hossain, M. K. & Murata, Y. (2016). Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Australian Journal of Crop Science, 10(1), 50.
  27. Hoque, M. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y. & Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164(5), 553-561.
  28. Hussain, K., Nawaz, K., Majeed, A., Khan, F., Lin, F., Ghani, A. & Shahazad, A. (2010). Alleviation of salinity effects by exogenous applications of salicylic acid in pearl millet (Pennisetum glaucum (L.) R. Br.) Seedlings. African Journal of Biotechnology, 9(50), 8602-8607.
  29. Jabarzade, M., Tehrani far, A., Amiri, J. & Abedi, B. (2017). Investigating on the protective role of nitric oxide in reducing the damages induced by salinity stress in (calendula officinalis L.cv Gitan Orange). Journal of Horticulture (Agricultural Science and Technology), 30(2), 185-191. (in Farsi)
  30. Kavi-Kishor, P. B., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P. & Sreeniv, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424-438.
  31. Kaya, C., Tuna, A. L., Ashraf, M. & Altunlu, H. (2007). Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany, 60(3), 397-403.
  32. Kaya, M. D., Okcu, G., Atak, M., Cikili, Y. & Kolsarici, O. (2006). Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295.
  33. Khan, A., Iram, I., Iftikhar, A., Humera, N. & Maria, N. (2014). Role of Proline to Induce Salinity Tolerance In sunflower (Helianthus annus L.). Science Technology and Development, 33 (2), 88-93.
  34. Khedr, A. H. A., Abbas, M. A., Wahid, A. A. A., Quick, W. P. & Abogadallah, G. M. (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress. Journal of Experimental Botany, 54(392), 2553-2562.
  35. Khosravinejad, H. F. R. & Farboondia, T. (2008). Effect of salinity on photosynthetic pigments, respiration and water content in barley varieties. Pakistan Journal of Biological Sciences, 11, 2438-2442.
  36. Kim, S. Y., Lim, J. H., Park, M. R., Kim, Y. J., Park, T. I., Seo, Y. W. & Yun, S. J. (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. BMB Reports, 38(2), 218-224.
  37. Lichtenthaler, H. K. (1987). Chlorolphylls and Carotenoids: Pigments of Photosynthetic membranes. Methods in Enzymology, 148, 350-383.
  38. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence inleaves of rice (Oryza sativa L.) cultivars differing in salinitary resistance. Annals of Botany, 78 (3), 389-398.
  39. MacAdam, J. W., Nelson, C. J. & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878.
  40. Manchanda G. & Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30, 595-618.
  41. Mattioli R., Marchese D, D., Angeli S., Altamura M. M., Costantino P. & Trovato, M. (2008). Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Molecular Biology, 66, 277-288.
  42. Matysik, J., Alai, B. B. & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82, 525-532.
  43. Mohammadi, L., Reezi, S. & Barzegar, R. (2016). Application of mycorrhizal fungi (Glomus mosseae) on reducing of salinity effect in New Guinea impatiens. Crops Improvement, 18(2), 289-301. (in Farsi)
  44. Molazem, D. & Azimi, J. (2011). Effect of different levels of salinity on Leaf characteristics and chlorophyll content of commercial varieties of maize (Zea mays L.). Australian Journal of Basic and Applied Science, 5, 1718-1722.
  45. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate- specific peroxidase in Spanish choloroplasts. Journal of Plant and Cell Physiology, 22(5), 867-880.
  46. Navarro, A., Banon, S., Olmos, E. & Sanchez-Blanco, M. D. J. (2007). Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172(3), 473-480.
  47. Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M. & Murata, Y. (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil and Plant Nutrition, 50, 1301-1305.
  48. Orcutt, D. M. & Nilsen, E. T. (2000). The Physiology of Plants under Stress, Soil and Biotic Factors. John Wiley & Sons.
  49. Pieshbin, A. (2016). Floriculture. Ayyzh. (in Farsi)
  50. Rodriguez, P., Torrecillas, A., Morales, M. A., Ortuno, M. F. & Sanchez-Blanco, M. J. (2005). Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany, 53(2), 113-123.
  51. Rogers, H. J. (2013). From models to ornamentals: how is flower senescence regulated. Plant Molecular Biology, 82, 563-574.
  52. Saxena, S. N., Kaushik, N. & Sharma, R. (2008). Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biologia Plantarum, 52, 181-183.
  53. Shaki, F., Maboud, H. E. & Niknam, V. (2018). Penconazole alleviates salt-induced damage in safflower (Carthamus tinctorius L.) plants. Journal of Plant Interactions, 13 (1), 420-427.
  54. Sharkey, T. D., Carl, J. B., Graham, D. F. & Singsaas, E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environment, 30, 1035-1040.
  55. Talebi, F., Mortazavi, S. N. & Sharafi, E. (2015). Effect of salinity on some morphophysiological traits of Zinnia elegans. Environmental Stresses in Crop Science, 7(2), 277-279. (in Farsi)
  56. Tanimoto, S., Miyazaki, A. & Harada, H. (1985). Regulation by abscisic acid of in vitro flower formation in Torenia stem segments. Plant & Cell Physiology, 26, 675-682.
  57. Trovato, M., Mattioli, R. & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19, 325-346.
  58. Virupakshi, S., Manjunatha, B. R. & Naik, G. R. (2002). In vitro flower induction in callus from a juvenile explant of sugarcane, Saccharum officinarum L. var. CoC 671. Currect Science Association, 83, 1195-1197.
  59. Wu, G. Q., Jiao, Q. & Shui, Q. Z. (2015). Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant, Soil and Environment, 61(5), 220-226.
  60. Zheng, J., Zhao, L., Wu, C., Shen, B. & Zhu, A. (2015). Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in Eurya emarginata. Acta Physiologiae Plantarum, 37(9), 181.