اثر کاربرد تلفیقی کودهای زیستی و شیمیایی بر صفات کمی وکیفی بالنگوی شهری ‏‏(‏Lallemantia iberica‏) در شرایط دیم

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی کارشناسی ارشد اگرواکولوژی، دانشکده کشاورزی، دانشگاه مراغه

2 دانشیار، دانشکده کشاورزی، دانشگاه مراغه

3 استادیار، دانشکده کشاورزی، دانشگاه مراغه

10.22059/ijhs.2019.273123.1578

چکیده

به‌منظور بررسی اثرات کاربرد تلفیقی قارچ مایکوریزا و کودهای شیمیایی مرسوم بر صفات کمی و کیفی گیاه دارویی بالنگو (Lallemantia iberica)، آزمایشی به صورت طرح بلوک‌های کامل تصادفی با 7 تیمار و 3 تکرار در مزرعه‌ی تحقیقاتی دانشگاه مراغه در سال 1395 اجرا شد. تیمارها شامل 100 درصد کود شیمیایی NPK (CF)، قارچ Gm (Glomus mosseae)، قارچ Gi (Glomus intraradices)، Gm+Gi،50% CF + Gm، 50% CF+ Gi، 50% CF+ Gm+ Gi بودند. نتایج نشان داد بیشترین (83/71) و کمترین (47/54) شاخص کلروفیل به‌ترتیب با کاربرد تلفیقی 50% CF+ Gm+ Gi و کاربرد جداگانه Gi مشاهده شد. همچنین بیشترین تعداد شاخه‌ جانبی به تیمارهای 50% CF+Gm +  Gi، 50% CF+ Gmو Gmمربوط بود. بیشترین عملکرد دانه (8/802 کیلوگرم در هکتار)، تعداد چرخه گل در بوته (6/63)، تعداد دانه در بوته (3/519)، تعداد دانه در ساقه اصلی (2/149)، تعداد دانه در چرخه گل (18)، وزن دانه در بوته (75/3 گرم)، وزن هزاردانه (7/4 گرم) و بیشترین وزن خشک کل (3/426 گرم در متر مربع) با کاربرد تلفیقی 50% CF+ Gm+ Gi به‌دست آمد. در ضمن بیشترین میزان (51/0) و عملکرد اسانس (2/2 گرم در متر مربع) با کاربرد تلفیقی 50% CF+Gm+Gi مشاهده شد. آنالیز GC-FID و GC-MS اسانس نشان داد که ترکیبات لینالول، منتون، ژرانیول، منتیل استات، ژرانیول استات، والنسن و کاریوفیلن اکساید جزء ترکیب‌های غالب اسانس بالنگو بودند. به‌طور کلی، کاربرد تلفیقی 50 درصد کود شیمیایی به همراه قارچ‌های مایکوریزا علاوه بر کاهش مصرف کودهای شیمیایی به بهبود کمیت و کیفیت اسانس بالنگو منجر گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of integrated application of biological and chemical fertilizers on the quality ‎and quantity traits of dragon's head (Lallemantia iberica) under rainfed condition‎

نویسندگان [English]

  • Serveh Saadi Moghaddam 1
  • Abdollah Javanmard 2
  • Mohammad Reza Morshedloo 3
  • Mojtaba Nouraein 3
1 M.Sc. Student of Agroecology, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Associate Professor, Faculty of Agriculture, University of Maragheh, Iran
3 Assistant Professor, Faculty of Agriculture, University of Maragheh, Iran
چکیده [English]

In order to evaluate the integrative application of arbuscular mycorrhizal fungi and chemical fertilizers on the quality and quantity traits of Dragon's head (Lallemantia iberica), a field experiment was carried out as a randomized complete blocks design (RCBD) with eight treatments and three replications at the faculty of Agriculture, University of Maragheh during 2016 growing season. Treatments were included 100% chemical fertilizer (CF), Glomus mosseae (GM), Glomus intraradices (GI), GM+GI, 50% CF+GM, 50% CF+GI and 50% CF+GM+GI. The results demonstrated that the highest (71.83) and the lowest (54.47) chlorophyll index was achieved in the 50% CF+GM+GI and individual application of GI. In addition, the highest number of lateral branches was related to application of 50% CF+GM+GI, 50% CF+GM and GI. Furthermore, the highest grain yield (802.8 Kg ha-1), number of flower cycles per plant (63.6), number of seed per plant (519.3), number of seeds in the main stem (149.2), number of seeds per flower cycle (18), seed weight per plant (3.75 g), the grain-1000 weight (4.75 g) and total dry weight (426.3 g m-2) were achieved in the integrative application of 50% CF+GM+GI. By the way, the highest of EO content (0.5%) and EO yield (2.2 g m-2) were observed with application of 50% CF+GM+GI. The analysis of GC-FID and GC-MS showed that the linalool,menthone,geranial,menthyl acetate,geranyl acetate,valencene andcaryophyllene oxide were the major essential oil compounds. Generally, integrative application of 50% CF+GM+GI could improve the quality and quantity traits of dragon's head.

کلیدواژه‌ها [English]

  • essential oil content
  • Essential oil yield
  • Glomus mosseae
  • Grain yield
  • menthone
  1. Adams, R. P. (1997). Identification of essential oil components by gas chromatography/mass spectroscopy. Journal of the American Society for Mass Spectrometry, 6(8), 671-672.
  2. Alimadadi, A., Jahansouz, M. R., Besharati, H., Tavakkol-Afshari, R. & Tavakkoli, M. (2011). Evaluating the effects of biofertilizers and seed priming on chickpea (Cicer arietinum L.) seed quality. Journal of Food, Agriculture & Environment, 9(2), 362-365.
  3. Aghlmand, S., Esmaeilpour, B., abbaszadeh, P., Soltani, A. & Jalilvand, P. (2016). Effects of mycorrhizal fungi and salicylic acid on growth and physiological parameters of basil (Ocimum basilicum L.) under water deficit conditions. Water and Soil Science, 26(3), 51-66. (in Farsi)
  4. Aghighi Shahverdi, M., Amini Dahaghi, M., Ataei Somagh, H. & Mamivand, B. (2019). The effect of different nutritional systems with nitrogen and phosphorous fertilizers on quantitative and qualitative traits of basil (Ocimum basilicum L.). Journal of Plant Productions (Agronomy, Breeding and Horticulture), 41(4), 1-14. (in Farsi)
  5. Ashraf, H., Zakizadeh, H., Ehtesham, S. & Biglouei, M. (2018). Effect of mycorrhiza fungi on morphological, physiological and biochemical characteristics of four cool season grass genera under drought stress conditions. Iranian Journal of Horticultural Science, 48(4), 855-873. (In Farsi)
  6. Ashraf, M., Ali, Q. & Rha, E. S. (2005). The effect of applied nitrogen on the growth and nutrient concentration of Kalonji (Nigella sativa). Australian Journal of Experimental Agriculture, 45(4), 459-463.
  7. Aslani, Z., Hassani, A., Sadagiyani, R., Sefidkon, F., Barin, M. & Gheibi, S. A. (2010). Effect of symbiosis with mycorrhiza fungi on some physiological characteristics of basil (Osimum basilicum) under drought stress. Environmental Stresses in Crop Sciences, 2(2), 109-117. (in Farsi)
  8. Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M. & Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. Journal of Environmental Management, 231, 182-188.
  9. Azimi, R. & Asghari, H. R. (2014). Effects of mycorrhiza symbiosis on initial establishment on morphological traits of thyme (Thymus vulgaris) under natural conditions. Iranian Journal of Field Crops Research, 11(4), 666-676. (in Farsi)
  10. Barari Ziabari, M. & Hashemabadi, D. (2016). Effect of phosphate solubilizing bacteria and mycorrhizal fungi on quantity and quality features of sweet william (Dianthus barbatus). Journal of Soil Biology, 4(1), 63-73. (in Farsi)
  11. Bagheri, V., Shamshiri, M., Alaei, H. & Salehi, H. (2019). Influence of three species of arbuscular mycorrhizal fungi on growth and nutrients uptake in zinnia plant under drought stress conditions. Journal of Plant Productions (Agronomy, Breeding and Horticulture), 41(4), 83-96. (in Farsi)
  12. Bastami, A. & Majidian, M. (2016). Comparison between mycorrhizal fungi, phosphate biofertilizer and manure application on growth parameters and dry weight of coriander (Coriandrum sativum L.) medicinal plant. Journal of Science and Technology of Greenhouse Culture, 7(26), 23-33. (in Farsi)
  13. Bethlenfalvay, G. J., Brown, M. S., Ames, R.N. & Thomas, R. E. (1988). Effects of drought on host and endophyte development in mycorrhizal soybeans in relation water use and phosphate uptake. Physiologia Plantarum, 72, 565-571.
  14. Colom, M. R. & Vazzana, C. (2003). Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany, 49(2), 135-144.
  15. Copetta, A., Lingua, G. & Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16(7), 485-494.
  16. Degenhardt, J., Kollner, T. G. & Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70 (15), 1621-1637.
  17. Esmaielpour, B., Jalilvand, P. & Hadian, J. (2013). Effects of drought stress and arbuscular mycorrhizal fungi on some morphophysiological traits and yield of savory (Satureja hortensis L.). Journal of Agroecology, 5(2), 169-177. (in Farsi)
  18. Fadaee, E., Parvizi, Y., Gerdakane, M. & Khan-Ahmadi, M. (2018). The effects of mycorhiza (Glomus mosseae and Glomus intraradiceae) and phosphorus on growth and phytochemical traits of Dracocephalum moldavica L.under drought stress. Journal of Medicinal Plants, 2(66), 100-112. (in Farsi)
  19. Fathi, A. & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1-6.
  20. Ghasemian, V., Shafagh, J. & Pirzad, A. (2017). Effect of Fertilizer Treatments and Irrigation Regimes on Lallemantia iberica seed mucilage yield and compounds. Journal of Agricultural Science and Sustainable Production, 27(3), 17-31. (in Farsi)
  21. Geneva, M. P., Stancheva, I. V., Boychinova, M. M., Mincheva, N. H. & Yonova, P. A. (2010). Effects of foliar fertilization and arbuscular mycorrhizal colonization on (Salvia officinalis L.) growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture, 90(4), 696-702.
  22. Gholinezhad, E. (2017). Effect of two species mycorrhizal fungi on quantitative and qualitative yield of sesame (Sesamum indicum L.) landraces in different levels of drought stress. Iranian Journal of Field Crops Research, 15(1). 150-167. (in Farsi)
  23. Ghorchiani, M., Akbari, G., Alikhani, H. A., Allahdadi, I. & Zarei, M. (2011). Effect of arbuscular mycorrhiza fungi and Pseudomonas florescence bacterium on the ear traits, chlorophyll content and yield of (Zea mays L.) under moisture stress conditions, Journal of Soil and Water, 21, 97-114. (in Farsi)
  24. Gheisari Zardak, S., Movahhedi Dehnavi, M., Salehi, A. & Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought strees on the physiological traits and essential oil yield of fennel. Rhizosphere, 6, 31-38. (in Farsi)
  25. Gheisari Zardak, S., Dehnavi, M. M., Salehi, A. & Gholamhoseini, M. (2017). Responses of field grown fennel (Foeniculum vulgare Mill.) to different mycorrhiza species under varying intensities of drought stress. Journal of Applied Research on Medicinal and Aromatic Plants, 5, 16-25. (In Farsi)
  26. Gutierrez‐Manero, F. J., Ramos‐Solano, B., Mehouachi, J., Tadeo, F. R. & Talon, M. (2001). The plant growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2), 206-211.
  27. Hamzei, J. & Salimi, F. (2014). Root colonization, yield and yield components of milk thistle (Silybum marianum) affected by mycorhizal fungi and phosphorus fertilizer. Journal of Agricultural and Sustainable Production. 24(4), 85-96. (in Farsi)
  28. Jamzad, Z. (2012). Flora of Iran, Vol. 76. Tehran, Research Institute of Forests and Rangelands, 799-950.
  29. James, B., Rodel, D., Lorettu, U., Reynaldo, E. & Tariq, H. (2008). Effect of vesicular arbescular mycorrhiza fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5), 2217-222.
  30. Jiang, Q. Y., Zhuo, F., Long, S. H., Zhao, H. D., Yang, D. J., Ye, Z. H. & Jing, Y. X. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Scientific reports, 6, 21805.
  31. Kapoor, R., Giri, B. & Mukerji, K. G. (2004). Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93(3), 307-311.
  32. Karimi Fard, S., Gholami, A. & Gholipoor, M. (2017). Determination of growth characteristics and quality of Nigella sativa L. affected by mycorrhizal fungi symbiosis and ultrasonic waves. Iranian Journal of Medicinal and Aromatic Plants, 33(5), 741-753. (in Farsi)
  33. Kapoor, R., Chaudhary, V. & Bhatnagar, A. K. (2007). Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17(7), 581.
  34. Kapoor, R., Anand, G., Gupta, P. & Mandal, S. (2017). Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews,16(4), 677-692.
  35. Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E. & Karagiannidou, C. (2011). Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae, 129(2), 329-334.
  36. Khalvati, M. A., Hu, Y., Mozafar, A. & Schmidhalter, U. (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 7(6), 706-712.
  37. Khalvandia, M., Ameriana, M. R., Pirdashtib, H., Keramatib, S. & Hosseinic, J. (2019). Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline condition. Industrial Crops & Products, 127, 195-202
  38. Khalid, K. A. (2006). Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20(4), 289-296.
  39. Khaninejad, S., Khazaie, H. R., Nabati, J. & Kafi, M. (2016). Effect of three species of mycorrhiza inoculation on yield and some physiological properties of two potato cultivars under drought stress in controlled conditions. Iranian Journal of Field Crops Research, 14(4), 574-558. (in Farsi)
  40. Kouchaki, A. R., Tabrizi, L. & Ghorbani, R. (2008). Effect of biofertilizers on agronomic and quality criteria of Hyssop (Hyssopus officinalis). Iranian Journal of Field Crops Research, 6(1), 127-137. (in Farsi)
  41. Khorramdel, S., Mahallati, M. N. & Ghorbani, R. (2010). Effect of biofertilizers on the yield and yield components of black cumin (Nigella sativa L.). Iranian Journal of Field Crops Research8(5), 768-776. (in Farsi)
  42. Leithy, S., El-Meseiry, T. A. & Abdallah, E. F. (2006). Effect of biofertilizer, cell stabilizer and irrigation regime on rosemary herbage oil yield and quality. Journal of Applied Sciences Research, 2(10), 773-779.
  43. Morshedloo, M. R., Maggi, F., Neko, H. T. & Aghdam, M. S. (2018). Sumac (Rhus coriaria L.) fruit: essential oil variability in Iranian populations. Industrial Crops and Products,111, 1-7.
  44. Masoumi Zavarian, A., Yousefi Rad, M. & Asghari, M. (2015). Effects of mycorrhizal fungi on quantitative and qualitative characteristics of anise plant (Pimpinella anisum) under salt stress. Journal of Medicinal Plants, 4(56), 139-148.
  45. Mahfouz, S. A. & Sharaf-Eldin, M. A. (2007). Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill.). International Agrophysics, 21(4), 361-366.
  46. Mafakheri, S., Asghari, B. & Shaltooki, M. (2016). Effects of biological, chemical and nano-fertilizers on quantitative and qualitative characteristics of Lallemantia iberica (M.B.) Fischer & Meyer. Iranian Journal of Medicinal and Aromatic Plants, 32(4), 667-677.
  47. Rahimi, A., Jahanbin, S., Salehi, A. & Farajee, H. (2018). The effect of mycorrhiza on yield, oil content and water use efficiency of medicinal plant of Borage (Borago officinails L.) under water stress. Iranian Journal of Horticultural Science, 49(2), 407-415. (in Farsi)
  48. Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V. & Samiyappan, R. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20(1), 1-11.
  49. Rezaei, C. E., Khorramdel, S., Movludi, A. & Rahimi, A. (2017). Effects of nano chelated zinc and mycorrhizal fungi inoculation on some agronomic and physiological characteristics of safflower (Carthamus tinctorius L.) under drought stress conditions. Iranian Journal of Field Crops Research, 15(1), 168-184. (in Farsi)
  50. Rezaei, C. E., Jamali, M., Pirzad, A. & Tofig, S. (2016). Effect of mycorrhizal fungi on some morphophysiological characters and yield of summer savory (Satureja hortensis L.) in salt stress conditions. Journal of Plant Process and Fanction, 5(17), 15-28. (in Farsi)
  51. Rivera-Cruz, M., Narcía, A. T., Ballona, G. C., Kohler, J., Caravaca, F. & Roldan, A. (2008). Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biology and Biochemistry, 40(12), 3092-3095.
  52. Sangwan, N. S., Farooqi, A. H. A., Shabih, F. & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant Growth Regulation, 34(1), 3-21.
  53. Shahbazi, Z., Salehi, A., Movahedi Dehnavi, M. & Farajee, H. (2019). The effect of organic fertilizer and mycorrhizal fungus on morphological characteristics, shoot biomass and mucilage of borage (Borago officinalis). Iranian Journal of Horticultural Science, 50(3), 561-570. (in Farsi)
  54. Shajari, M. A., Ghorbani, R. & Mahallati, M. N. (2014). Effects of organic, biological and chemical fertilizers on vegetative indices and essential oil content of coriander (Coriandrum sativum L.). Journal of Agroecology, 6(3), 425-443. (in Farsi)
  55. Smith, S. E., Facelli, E., Pope, S. & Smith, F. A. (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1-2), 3-20.
  56. Soltanian, M., Tadayyon, A. & Fallah, S. (2015). The effect of arbuscular mycorrhizal fungi on some vegetative traits and yield of linseed (Linum ussitatissimum L.) under water deficit stress conditions.  Journal of Crops Improvement (Journal of Agriculture), 17(3), 621-634. (in Farsi)
  57. Supratim, B., Roel, C. R. & Sangeeta, N. (2018). AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 102, 36-45.
  58. Tashakorifard, E., Ghasemkheyli, F. T., Pirdashti, H., Ghanbary, M. A. T. & Bahmanyar, M. A. (2017). Symbiotic effect of Trichoderma atroviride on growth characteristics and yield of two cultivars of rapeseed (Brassica napus L.) in a contaminated soil treated with copper nitrate. Iranian Journal of Field Crops Research, 15(1), 74-86. (in Farsi)
  59. Toussaint, J. P., Smith, F. A. & Smith, S. E. (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza, 17(4), 291-297.
  60. Wahbi, S., Maghraoui, T., Hafidi, M., Sanguim, H., Oufdou, K. & Prin, Y. (2016). Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis. Applied Soil Ecology, 107, 91-98.
  61. Weisany, W., Raei, Y. & Pertot, I. (2015). Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products, 77, 295-306.
  62. Wu, Q. S., Xia, R. X., Zou, Y. N. & Wang, G. Y. (2007). Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologiae Plantarum, 29(6), 543.
  63. Wu, Q. S. & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417-425.
  64. Yazdani, M., Bahmanyar, M. A., Pirdashti, H. & Esmaili, M. A. (2009). Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). International Journal of Agricultural and Biosystems Engineering, 3(1), 90-92.
  65. Yan, W., Zhong, Y. & Shangguan, Z. (2016). A meta-analysis of leaf gas exchange and water status responses to drought. Scientific Reports, 6, 20917.
  66. Yang, J. Y., Zheng, W., Tian, Y., Wu, Y. & Zhou, D. W. (2011). Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 49(2), 275-284.
  67. Younesi, O., Moradi, A. & Mohammad Shafiee, M. (2018). Effects of arbuscular mycorrhizal fungus (AMF) on essential oil yield and composition of different parts of Dill (Anethum graveolens L.) under salt stress conditions. Journal of Medicinal Plants Biotechnology, 3(2), 8-19. (in Farsi)
  68. Zahra, I. T. & Loynachan. T. E. (2003). Endomycorrhizal fungi survival in continuous corn, soybean and fallow. Agronomy Journal, 95(1), 224-230.
  69. Zakerian, F., Sefidkon, F., Abbaszadeh, B. & Kalate-Jari, S. (2020). Effect of drought stress and mycorrhizal fungi on physiological traits and essential oil percentage of Satureja sahandica Bornm. Iranian Journal of Horticultural Science, 51(1), 189-201. (in Farsi)
  70. Zamani, F., Amirnia, R., Rezaei-chiyaneh, E. & rahimi, A. (2017). Evaluation of yield and yield components of fennel (Foeniculum vulgare L.) with the combined application of nitrogen, phosphorus and potassium supplier bacteria with mycorrhizal fungi in low-input cropping system. Journal of Agricultural Science and Sustainable Production, 27(4), 217-231. (in Farsi)
  71. Zhang, T., Hu, Y., Zhang, K., Tian, C. & Guo, J. (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13-19.
  72. Zolfaghari, M., Nazeri, V., Sefidkon, F. & Rejali, F. (2013). Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iranian Journal of Plant Physiology, 3(2), 643-650. (in Farsi)