ارزیابی رشد، کارآیی مصرف آب، نیتروژن، پتاسیم و فعالیت آنزیم نیترات ردوکتاز خربزه "خاتونی" ‏پیوندی در کشت بدون خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 دانشجوی دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

صفات رویشی، محتوی کلروفیل، کارآیی مصرف آب، محتوای نیتروژن، پتاسیم و فعالیت آنزیم نیترات ردوکتاز برگ‏‌‏ها و نوک ریشه، خربزه ’خاتونی‘ روی کدوهای Ace و Shintozwa در گلخانه­ بررسی شد. تیمارهای آزمایش شامل پیوند خربزه روی کدو، خربزه روی خربزه، کدو روی خربزه، کدو روی کدو، خربزه غیرپیوندی و کدوی غیرپیوندی بودند. نتایج نشان داد خربزه‏‌‏های پیوندی روی Shintozwa طول ساقه (3/408 سانتی‏‌‏متر)، تعداد برگ (56/38 عدد) وزن تر برگ (7/156 گرم)، ساقه (7/132 گرم)، سطح برگ بوته (6/18517 سانتی‏‌‏مترمربع)، زیست‏‌‏توده (5/247 گرم) و درصد ماده خشک برگ (19/14 درصد)، ساقه (96/7 درصد) و ریشه (46/17 درصد) بیشتری نسبت بهAce  داشتند. پیوند خربزه روی هر دو پایه کارآیی مصرف آب، محتوای نیتروژن و پتاسیم را بهبود بخشید. نیتروژن کل و نیترات برگ‏‌‏ها در Ace بیشتر از Shintozwa به‏‌‏دست آمد. مقدار نیتروژن آمونیومی برگ‏‌‏ها در پایه Shintozwa بیشتر از پایه Ace بود. فعالیت آنزیم نیترات ردوکتاز برگ خربزه‏‌‏های پیوندی روی پایه Ace بیشتر از پایه Shintozwa بود. فعالیت آنزیم نیترات ردوکتاز در ریشه نسبت به برگ در حالت پیوندی بیشتر بود. فعالیت آنزیم نیترات ردوکتاز ریشه ارتباط غیرمستقیم معنی‏‌‏داری با طول شاخه، زیست‏‌‏توده ، وزن تر برگ و شاخه، سطح کل برگ و ماده خشک ریشه نشان داد. در کل خربزه‏‌‏های پیوندی نسبت به غیرپیوندی دارای مقادیر زیادتری نیتروژن آلی نسبت به زیست‏‌‏توده کل بودند که این افزایش در ارتباط با احیا و مصرف زیاد نیترات می‏‌‏باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of growth, water, nitrogen, potassium use efficiency and nitrate ‎reductase activity in grafted melon “Khatooni” under soilless culture

نویسندگان [English]

  • Mesbah Babalar 1
  • Roghayeh Javanpour 2
  • Abdolkarim Kashi 1
  • Mojtaba Delshad 3
1 Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Ph.D. Candidate, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Vegetative traits, chlorophyll content, water use efficiency, nitrogen, potassium and nitrate reductase activity of leaves and root tip were investigated in composition of the melon 'Khatooni' on squash cultivars Ace and Shintozwa under greenhouse conditions. Treatments consisted of melon grafted on squash, melon on melon, squash on melon, squash on squash, melon and squash own-rooted. Results showed that melon grafted on Shintozwa  had stem length (408.3 cm), leaf number (38.56), total leaves fresh weight (156.7 g), total shoot fresh weight (132.7 g), leaf area (18517.6 cm2), biomass (247.5 g), leaf dry matter (14.19%), shoot dry matter (7.96%) and root dry matter (17.46%) more than Ace. Grafted melons on both rootstocks were increased water, nitrogen and potassium use efficiency. The amount of total nitrogen and leaf nitrate on Ace rootstock was more than Shintozwa. The leaf ammonium on Shintozwa rootstock was more than Ace. A high nitrate reductase activity of leaves was obtained on melons grafted on Ace rootstock. Nitrate reductase activity in roots was higher than the leaves especially in the case of grafting. Root nitrate reductase activity was demonstrated a negative correlation with shoot length, biomass, leaf fresh weight, shoot fresh weight, leaf total area and root dry matter. Grafted melons totally contain large amount of organic nitrogen were compared to non-grafted, which it related to nitrate reduction and high nitrate consumption.

کلیدواژه‌ها [English]

  • Melon
  • nitrate reductase
  • nitrogen
  • rootstock
  • scion‎
  1. Agricultural statistics of Iran. (2014). Reports by the Central Bank of Iran, including statistics about agriculture in Iran. http://www.amar.org.ir.
  2. Albacete, A., Martínez-Andujar, C. & Perez-Alfocea, F. (2014). Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32, 12-30.
  3. Arnon, D.I. (1956). Photosynthesis by isolated chloroplast. Biochemistry and Biophysics, 20, 440-461.
  4. Bakhshande, A. (2009). The problems and solutions of water scarcity in Iran. 2nd National Seminar on Drought Effects and Management. http://www.civilica.com/Paper-NSDEM02-NSDEM02_417.html.
  5. Bremner, J.M. (1965). Total nitrogen. In: Methods of Soil Analysis; Eds, C.A. Black, D.D. Evans, I.L. White, L.E. Ensminger and FE. Clark, Agronomy Monograph 9, Part 2, pp. 1149-1178.
  6. Castle, W.S. & Krezdorn, A.H. (1975). Effect of citrus rootstock on root distribution and leaf mineral content of ‘Orlando’ tangelo trees. Journal American Society for Horticultural Science, 100(1), 1-4.
  7. Cazetta, J.O. & Villela, L.C.V. (2004). Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Scientia Agricola(Piracicaba, Braz.), 61 (6), 640-648.
  8. Cherubino, L. & Giuseppe, C. (2011). Grafting to increase the tolerance to abiotic stresses. International Symposium on Vegetable Grafting, Viterbo/ Italy. 3-5 Oct. 42p
  9. Cohen, R. & Edelstein, M. (2014). Cucurbita rootstock breeding: from random breeding to adapting rootstocks for special demands. Proceedings of the First International Symposium on Vegetables Grafting, Wuhan, China, 17-21 March 2014, 45p.
  10. Cohen, R., Edelstin, N., Grosch, R. & Schwarz, D. (2015). Cucurbita rootstocks: from random crosses to rational breeding. V International Symposium on Cucurbits. Cartagena, Murcia, Spain, 22 June, 58p.
  11. Colla, G., Rouphael, Y., Mirabelli, C. & Cardarelli, M. (2011). Nitrogen-use efficiency traits of miniatermelon in response to grafting and nitrogen-fertilization doses. Journal of Plant Nutrition and Soil Science, 174, 933-941.
  12. Colla, G., Sua´rez, C. M.C. & Cardarelli. M. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565.
  13. Davis, A.R. & Perkins-Veazie, P. (2005). Rootstock effects on plant vigor and watermelon fruit quality. Report-Cucurbit Genetics Cooperative, 28-29, 39-42.
  14. Dettori, S. (1985). Leaf water potential, stomatal resistance and transpiration response to different watering in almond, peach and "Pixy" plum. Acta Horticulturae., 171, 181-186.
  15. Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A. & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigor, survival and yield of grafted melons. Journal of Horticultural Science & Biotechnology, 79, 370-374.
  16. FAOSTAT. (2013). http://faostat.fao.org/site/340/default.aspx.
  17. Hagihara, T. (2004). Rootstock cultivars and their characteristics. In: Watermelon and Pumpkin. 5. Pp: 147-154. Yasai-engei Hyakka, Ed., Noubunkyo, Japan. (in Japanese)
  18. Hamada, A.M. & EL-enany, A.E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36, 75-81.
  19. Heidary, N., Eslami, A., Ghadami, A. & Canoni, A. (2006). Water use efficiency of crops in different regions of the Iran. 1st Irrigation and DrainageNetwork Management Conference. http://www.civilica.com/Paper-IDNC01-IDNC01_006.html
  20. Javanpour, R., Salehi, R., Nejadsahebi, M. & Mousavizadeh, S.J. (2015). Evaluation of quality and quantity of three accessions of grafted and non-grafted of Iranian melon. Iranian Journal of Horticultural Science, 46(1), 169-178. (in Farsi)
  21. Kashi, A., Salehi, R. & Javanpour, R. (2008). Grafting Technology in Vegetable Crop Production. (1st Ed.). Agriculture Education Pub, 212 p. (in Farsi)
  22. Kim, M., Canio, W., Kessler, S. & Sinha, N. (2001). Developmental changes due tolong-distance movement of a homeobox fusion transcript in tomato. Science, 293, 287-9.
  23. King, S.R., Davis, A.R., Zhang, X. & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127, 106-111.
  24. Larcher, W. (1980). Physiological Plant Ecology. 2nd Totally Revised Edition, Springer–Verlag, Berlin, Heidelberg, New York. 540pp
  25. Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Hoyos Echevarria, P., Morra, L. & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105.
  26. Lee, J.M. & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61-124.
  27. Lee, J.M. (1994). Cultivation of grafted vegetables. I. Current status, grafting methods, and benefits. HortScience, 29, 235-239.
  28. Liu, Y., Kong, Q. & Bie, Z. (2015). Appraisals on the utility of pumpkin cross combinations as rootstock of grafted melon. V International Symposium on Cucurbits. Cartagena, Murcia, 22 June, 56p.
  29. Mallory, A.C., Mlotshwa, S., Bowman, L.H. & Vance, V.B. (2003). The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. The Plant Journal, 35(1), 82-92.
  30. Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic press, London. 889 p.
  31. Miguel, A. (2004). Use of grafted plants and IPM methods for the production of tomatoes in the meditrranean region. Instituto Valenciano de Investigaciones Agrarias IVIA Moncada (Valencia) Spain.
  32. Mohsenian, Y. & Roosta, H.R. (2015). Effects of grafting on alkali stress in tomato plants: datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition, 38, 51-72.
  33. Mohsenian, Y. & Roosta H.R. (2014). Effect of eggplant, field tomato, datura, orange nightshade and Iranian tobacco rootstocks on iron and chlorophyll concentrations in grafted tomato. Journal of Science and Technology of Greenhouse Culture, 5 (1), 63-72. (In Farsi)
  34. Mohsenian, Y., Roosta, H.R., Karimi, H.R. & Esmaeilizade, M. (2012). Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica, 50 (3), 411-421.
  35. Nie, L.C. & Chen, G.L. (2000). Study on growth trends and physiological characteristics of grafted watermelon seedlings, Acta Agriculturae Boreali-Occidentalis Sinica, 9, 100-103.
  36. Paplomatas, E.J., Elena, K., Tsagkarakou, A. & Perdikaris, A. (2002). Control of verticillium wilt of tomato and cucurbits through grafting of commercial varieties on resistant rootstocks. Acta Horticulturae, 579, 281-284.
  37. Perez-Alfocea, F. (2014). Why should we investigate vegetable grafting. In: Proceedings of the First International Symposium on Vegetables Grafting, Wuhan, China, 17-21 March.
  38. Prohens, J. & Nuez, F. (2008). Handbook of Plant Breeding: Vegtables I. Springer Publishing. 426 pp.
  39. Qi, H.Y., Li, T.L., Liu, Y.F. & Li, D. (2006). Effects of grafting on photosynthesis characteristics, yield, and sugar content in melon. Journal-Shenyang Agricultural University, 37, 155-158.
  40. Rivero, R.M., Ruiz, J.M. & Romero, L. (2003). Role of grafting in horticultural plants under stress conditions. Journal of Food Agriculture and Environment, 1, 70-74.
  41. Robinson, R. & Deckerwalters, D. (1997). Cucurbits. Cab International Wallingford, UK. 280pp
  42. Roosta, H.R. & Karimi, H.R. (2012). Effects of alkali-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock. Journal of Plant Nutrition, 35(12), 1843-1852.
  43. Rouphael, Y., Cardarelli, M. & Colla, G. (2008). Yield, mineral composition, water relation, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3), 730-736.
  44. Rubatzky, V.E. & Yamaguchi, M. (1997). World vegetables: principles, production and nutritive values, Second Edition, Chapman and Hall, International Thompson Publishing, 843pp.
  45. Ruiz, J.M. & Romero, L. (1999). Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae, 81, 113-123.
  46. Ruiz, J.M., Belakbir, A., Lopez-Cantarero, I. & Romero, L. (1997). Leaf-macronutrient content and yield in grafted, melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 71, 227-234.
  47. Sakata, Y., Takayoshi, O. & Mitsuhiro, S (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Horticulturae, 731, 159-170.
  48. Salehi, R., Kashi, A., Lee, J. M., Babalar, M., Delshad, M., Lee, S. G. & Huh, Y. C. (2010). Leaf gas exchanges and mineral ion concentration in xylem sap of Iranian melon affected by rootstocks and training methods. HortScience, 45, 766-770.
  49. Salehi, R., Kashi, A., Lee, S.G., Huh, Y.C., Lee, J.M., Babalar, M. & Delshad, M. (2009). Assessing the survival and growth performance of Iranian melon to grafting onto Cucurbita rootstocks. Korean Journal of Horticultural Science and Technology, 27(1), 1-6.
  50. Schwarz, D., Rouphael, Y., Colla, G. & Venem, J.H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127, 162-171.
  51. Steingrobe, B. & Claassen N. (2000). Potassium dynamics in the rhizosphere and K efficiency of crops. Journal of Plant Nutrition and Soil Science, 163, 101-106.
  52. Tamada, A. (1989). Characteristics of rootstocks and their adaptabilities. In: Vol. 4, Melon and Watermelon. Yasai-engei Dai hyakka,pp. 433-446. Noubunkyo, Tokyo, Japan. (in Japanese)
  53. Tooumi, I., Sehli, W. M., Bourgou, S., Jallouli, N., Bensalem-Fnayou, A., Ghorbel, A. & Mliki, A (2007). Response of ungrafted and grafted grapevine cultivars and rootstocks (Vitis sp.) to water stress. International Journal of Vine and Wine Sciences, 41(2), 85-93.
  54. Wei, S., Wu, Y.Z. & Huang, J. (2006). Effects of rootstocks on growth and photosynthetic properties of grafted plants of netted melon. Acta Agriculturae Shanghai, 22, 114-117.
  55. Yang, Y., Lu, X., Yan, B., Li, B., Sun, J., Guo, S. & Tezuka, T. (2013). Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl stressed watermelon leaves and enhances short-term salt tolerance. Journal of Plant Physiology, 7, 653-61.
  56. Yetisir, H. & Sari, N. (2004). Effect of hypocotyls morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turkish Journal of Agriculture and Forestry, 28, 231-237.
  57. Zhu, J., Bie, Z.L., Xu, R., Tang, M. & Pei, Y. (2006). Effects of different rootstocks on the growth, yield, and quality of cucumber fruits. Journal of Huazhong Agricultural University, 25, 668-671.