خواص آنتی‏‌‏اکسیدانی برخی از ژنوتیپ‏‌های زرشک بومی ایران

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی‎ ‎دکتری، گروه‎ ‎باغبانی،‎ ‎دانشکده‎ ‎تولید‎ ‎گیاهی،‎ ‎دانشگاه‎ ‎علوم‎ ‎کشاورزی‎ ‎و‎ ‎منابع‎ ‎طبیعی‎ ‎گرگان،‎ ‎گرگان،‎ ‎ایران

2 دانشیار، گروه‎ ‎باغبانی،‎ ‎دانشکده‎ ‎تولید‎ ‎گیاهی،‎ ‎دانشگاه‎ ‎علوم‎ ‎کشاورزی‎ ‎و‎ ‎منابع‎ ‎طبیعی‎ ‎گرگان،‎ ‎گرگان،‎ ‎ایران

3 دانشیار،‎ ‎گروه‎ ‎اصلاح‎ ‎نباتات،‎ ‎دانشکده‎ ‎تولید‎ ‎گیاهی،‎ ‎دانشگاه‎ ‎علوم‎ ‎کشاورزی‎ ‎و‎ ‎منابع‎ ‎طبیعی‎ ‎گرگان،‎ ‎گرگان،‎ ‎ایران

چکیده

 در این پژوهش توانمندی آنتی‏‌‏اکسیدانی 15 ژنوتیپ‏ مختلف زرشک به روش­های چهارگانه DPPH، قدرت کاهندگی آهن، بتاکاروتن لینولئیک اسید و فعالیت آنتی‏‌‏اکسیدانی براساس روش TFPL در سال 1396 در دانشگاه علوم کشاورزی و منابع طبیعی گرگان مورد بررسی قرار گرفت. 14 ژنوتیپ دانه‏دار وحشی و یک ژنوتیپ بی‏دانه زراعی زرشک از استان‏های شمال شرق ایران جمع‏آوری و بررسی شدند. نتایج تجزیه واریانس نشان داد ژنوتیپ دارای اثر معنی‏داری بر میزان فنل، فلاونوئید، آنتوسیانین و توانمندی آنتی‏‌‏اکسیدانی میوه‏ با استفاده از روش‏های DPPH، قدرت کاهندگی آهن، بتاکاروتن لینولئیک اسید و TFPL بود. در این پژوهش بیشترین و کمترین میزان فنل کل به ترتیب به مقدار 169و 149 میلی­گرم بر گرم (وزن خشک) در ژنوتیپ‏های درگز1 و بیرجند بی­دانه حاصل شد. همچنین ژنوتیپ‏های گلستان1 و شیروان 5 به ترتیب بالاترین میزان فلاونوئید (6/88 میلی‏‌‏گرم بر گرم وزن خشک) و آنتوسیانین (619 میکروگرم بر گرم وزن خشک) را دارا بودند. همچنین نتایج نشان داد فعالیت آنتی‏‌‏اکسیدانی بر مبنای TFPL اندازه‏گیری شده میوه‏ی ژنوتیپ‏های زرشک در روش­های مختلف اندازه‏گیری متفاوت بودند. توانمندی آنتی‏‌‏اکسیدانی اندازه‏گیری شده با روش‏های مختلف از قبیل روش DPPH، قدرت کاهندگی آهن، بتاکاروتن لینولئیک اسید اسید به ترتیب در ژنوتیپ‏های شیروان4 (7/63 میلی‏‌‏گرم بر گرم)، بیرجند بیدانه (5/54 میکرومول بر گرم)، درگز2 (78 درصد) بیشترین میزان بود. همچنین فعالیت آنتی‏‌‏اکسیدانی بر مبنای TFPL در ژنوتیپ گلستان3 (9/29 میکروگرم بر میلی لیتر) بیشتر از سایر ژنوتیپ‏ها بود. نتایج نشان داد توانمندی آنتی‏‌‏اکسیدانی بر مبنای TFPL در ژنوتیپ‏های مختلف زرشک با ترکیبات فنلی رابطه مستقیم دارد و ژنوتیپ‏هایی که دارای بالاترین میزان ترکیبات فنلی به خصوص فنل کل هستند، دارای خاصیت آنتی اکسیدانی بالاتری نیز می‏باشند. نتایج مقایسه روش‏های اندازه‏گیری فعالیت آنتی‏‌‏اکسیدانی ژنوتیپ‏های مختلف زرشک نشان داد روش میزان فعالیت آنتی‏‌‏اکسیدانی بر مبنای TFPL به دلیل ارتباط بیشتر با ترکیبات آنتی‏‌‏اکسیدانت از قبیل فنل کل روش بهتری برای اندازه‏گیری میزان فعالیت آنتی‏‌‏اکسیدانی در ژنوتیپ‏های زرشک بود و ژنوتیپ درگز1 با مقادیر بالای فنل کل دارای فعالیت آنتی‏‌‏اکسیدانی بالایی است که می‏توان از این ژنوتیپ در مطالعات بالینی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

The antioxidant properties of some endemic barberry genotypes of Iran

نویسندگان [English]

  • Somaye Talebi 1
  • Mahdi Alizadeh 2
  • Sanaz Ramezanpour 3
  • Azim Ghasemnajad 2
1 Ph.D. Candidate, Department of Horticulture, Faculty of Plant Production, Gorgan University of ‎Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Horticulture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and ‎Natural Resources, Gorgan, Iran
3 Associate Professor, Department of Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and ‎Natural Resources, Gorgan, Iran
چکیده [English]

In the present research, the antioxidant property of 15 barberry genotypes was assessed by four various methods namely; DPPH, ferric reducing antioxidant power (FRAP), beta-carotene linoleic acid and total antioxidant activity based on TFPL method in Gorgan University of Agricultural Siences and Natural Resources at 2017. The plant materials were 14 seeded berrbery genotypes and a seedless one that already collected from northeastern provinces of Iran. The results of analysis variance showed that the effect of genotype was significant on phenol, flavonoid, anthocyanin, antioxidant capacity of barberry genotypes measured by DPPH, FRAP, beta-carotene linoleic acid and TFPL methods. In this experiment the highest and lowest levels of phenol (169 and 149 mg/g DW) were obtained in Daregaz1 and seedless Birjand genotypes, respectively. Also, Golestan1 and Shirvan5 genotypes had the highest flavonoid (88.6 mg/g) and anthocyanin (619 μmol/g), respectively. The results also showed that the antioxidant properties of barberry fruits were different in all measurement methods. The measured antioxidant capacity by various methods such as DPPH, FRAP, beta-carotene Linoleic acid were the highest in Shirvan4 (63.7 mg/g), seedless Birjand (54.5 μmol/g) and Dargas2 (78%) respectively. The total antioxidant activity based on TFPL method in Golestan3 genotype (29.9 μg/ml) was higher than other genotypes. The results showed that the total antioxidant activity in different barberry genotypes was directly related to phenolic compounds, and genotypes with the higher phenolic compounds, especially total phenols, had higher antioxidant properties. In this study, results of antioxidant activity comparison in different methods for berbery genotypes showed that it was finally determined that the total antioxidant activity based on TFPL method was a better technique for measuring the antioxidant activity in barberry genotypes due to its greater association with antioxidant compounds such as phenols. Furthermore, Daregaz1 genotype had the thigher phenols and therefore showed a high total antioxidant activity, which may be used in clinical studies.

کلیدواژه‌ها [English]

  • Anthocyanin
  • beta-carotene linavic acid
  • flavonoid
  • Phenolic componds
  1. Aghbashlo, M., Kianmehr, M. H. & Hassan-Beygi, S. R. (2008). Specific heat and thermal conductivity of berberis fruit (Berberis vulgaris). American Journal of Agricultural and Biological Sciences, 3 (1), 330-336.
  2. Ahmadi, F., Kadivar, M. & Shahedi, M. (2007). Antioxidant activity of Kelussia odoratissima Mozaff in model and food systems. Food Chemistry, 105, 57-64.
  3. Akhavan, H., Barzegar, M., Weidlich, H. & Zimmermann, B. F. (2015). Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars depend on extraction. Journal of Chemistry, 20(15), 1-7.
  4. Aksoy, L., Kolay, E., Aglo, Y., Aslan, Z. & Kargoglu, M. (2013). Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi Journal of Biological Sciences, 20, 235-239.
  5. Aliakbarlu, J., Ghiasi, S. & Bazargani-Gilani, B. (2018). Effect of extraction conditions on antioxidant activity of barberry (Berberis vulgaris L.) fruit extracts. Veterinary Research Forum, 9 (4), 361-365.
  6. Benzie, F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of
    antioxidant power: the FRAP assay. Analytical Biochemistry, 239, 70-76.
  7. Bernatonienė, J., Masteikova, R., Majienė, D., Savickas, A., Kėvelaitis, E. & Bernatonienė, R. (2008). Free radicalscavenging activities of Crataegus monogyna extracts. Medicina (Kaunas), 44(9), 706-712.
  8. Biglari, F., Alkarkhi, A. F .M. & Easa, A. M. (2008). Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chemistry, 107, 1636-1641.
  9. Blumenthal, M., Busse, W. R., Goldbert, A., Gruenwald, J., Hall, T., Klein, S., Riggins, C.W. & Rister, R.S. (1998). The complete German Commission E Monographs: Therapeutic Guide to Herbal Medicine. American Botanical Council, Austin, USA. pp, 309-310.
  10. Brunetton, J. (1999). Pharmacognosy, Phytochemistry, Medicinal Plants. Lavoisier Publishing, Paris, p. 921.
  11. Capitani, C.D., Carvalho, A.C.L., Rivelli, D.P., Barros, S.B.M. & Castro, I.A. (2009). Evaluation of natural and synthetic compounds according to their antioxidant activity using a multivariate approach. European Journal of Lipid Science and Technology, 111, 1090-1099.
  12. Chang, C. M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182.
  13. Chirinos, R., Rogez, H., Campos, D., Pedreschi, R. & Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruiz and Pavon). Separation andPurification Technology, 55, 217-225.
  14. Das, N.P. & Pereira, T.A. (1990). Effects of flavonoids on thermal autooxidation of palm oil: structure-activity relationship. Journal of American Oil Chemistry Society, 67, 255-258.
  15. Deepa, N., Kaura, Ch., Georgea, B., Singhb, B. & Kapoor, H. C. (2007). Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT Food Science and Technology, 40, 121-129.
  16. De-Gaulejac, N.S.C., Glories, Y. & Vivas, N. (1999). Free radical scavenging effect of anthocyanins in red wines. Food Research International, 32, 327-333.
  17. El-Wahab, A. E. A., Ghareeb, D. A., Sarhan, E. E. M, Abu-Serie, M. M. & Demellawy, M. A. E. (2013). In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, antidiabetic and anticancer effects. Academic Journal, 5(13), 218-226.
  18. Ersoy, N., Kupe, M., Ibrahim Sagbas, H. & Ercisli, S. (2018). Physicochemical diversity among Barberry (Berberis vulgaris L.) fruits from eastern Anatolia Notulae Botanicae Horti Agrobotanici Clij-Napoca, 46(2), 336-342.
  19. Fernandes, R.P.P., Trindade, M.A., Tonin, F.G., Lima, C.G., Pugine, S.M.P., Munekata, P.E.S., Lorenzo, J.M. & DeMelo, M.P. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53(1), 451-460
  20. Ferre, N., Camps, K., Cabre, M., Paul, A. & Joven, J. (2001). Hepatic paraoxygenase activity alterations and free radical production in rats with experimental cirrhosis. Metabolism, 50(9), 997-1000.
  21. Frohne, D. & Pfänder, H.J. (1987). Giftpflanzen.Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, p 78.
  22. Fukumoto, L.R. & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agriculture and Food Chemistry, 48, 3597-3604.
  23. Gawlic-Dziki, U. (2012). Dietary spices as a natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT Food Science and Technology, 47, 138-146.
  24. Gholizadeh Moghadam, N., Hosseini, B. & alirezaaloo, A. (2017). Evaluation of variation of some phytochemical indices of leaf extract in different genotypes of barberry plant in northwestern Iran. Quarterly Journal of Ecophythechemistry of Medicinal Plants, 5 (2), 1-13. (in Farsi)
  25. Gilgun-Sherki, Y., Melamed, E. & Offen, D. (2001). Oxidative stress induced neuro-dengenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40(8), 959-75.
  26. Guo, X.Y., Wang, J., Wang, N.L., Kitanaka, S. & Yao, X.S. (2007). 9, 10-Dihydro phenanthrene derivatives from Pholidota yunnanensis and scavenging activity on DPPH free radical. Journal of Asian National Product Research, 9, 165-174.
  27. Hanachi, P. & Golkho, S.H. (2009). Using HPLC to determination the composition and antioxidant activity of Berberis vulgaris. Europian Journals Publishing, 29, 47-54.
  28. Hanachi, P., Kua, S.H., Asmah, R., Motalleb, G. & Fauziah, O. (2006). Cytotoxic effect of Berberis vulgaris fruit extract on the proliferation of human liver cancer line (HepG2) and its antioxidant properties. International Journal of Cancer Research, 2, 1-9.
  29. Hassanpour, H. & Alizadeh, S. (2016). Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Scientia Horticulturae, 200, 125-130.
  30. Hayouni, A., Abedrabba, M., Bouix, M. & Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105 (3), 1126-1134.
  31. Hoshyar, R., Mahboob, Z. & Zarban, A. (2016). The antioxidant and chemical properties of Berberis vulgaris and its cytotoxic effect on human breast carcinoma cells. Cytotechnology, 68, 1207-1213.
  32. Hosseinihashemi, S. K., Anooshei, H., Aghajani, H. & Salem, M. Z. M. (2015). Chemical composition and antioxidant activity of extracts from the inner bark of Berberis vulgaris stem. Bioresources, 10(4), 7958-7969.
  33. Huang, D., Ou, B. & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856.
  34. Jamshidi, M., Ashtiani, H., Rezazadeh, S.H., Fathizadeh, F., Mazandarani, M. & Khaki, A. (2010). Evaluation and comparison of phenolic compounds and antioxidant activity of some native plant species of Mazandaran.  Journal of Medicinal Plants. 2 (34) :177-182.
  35. Javanmardi, J., Stushnoff, C., Locke, E. & Vivanco, J.M. (2003). Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry, 83, 547-550.
  36. Jung, C.H., Seog, H.M., Choi, I.W., Park, M.W. & Cho, H.Y. (2006). Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT Food Science and Technology, 39, 266-274.
  37. Kaliora, A.C., Dedoussis, G.V.Z. & Schmidt, H. (2006). Dietary antioxidants in preventing atherogenesis. Atherosclerosis, 187, 1-17.
  38. Katalinic, V., Milos, M., Kulisic, T. & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94, 550-557
  39. Koncic, M.Z., Kremer, D., Karlovic, K. & Kosalec, I. (2010). Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food and Chemical Toxicology, 48, 2176-2180.
  40. Kosalec, I., Gregurek, B., Kremer, D., Zovko, M., Sankovic, K. & Karlovic, K. (2009). Croatian barberry (Berberis croatica cv Horvat): a new source of berberine-analysis and antimicrobial activity. World Journal Microbiology and Biotechnology, 25, 145-150.
  41. Kulisic, T., Radonic, A. & Katalinic, V. (2004). Use of different methods for testing antioxidative of oregano essntial oil. Journal of Food Chemistry, 85, 633-640.
  42. Kuo, C., Chi, C. & Liu, T. (2004). The anti-inflammatory potential of berberine invitro and invivo. Cancer Letters, 203(2), 127-137.
  43. Martynov, E.G., Stroev, E.A. & Peskov, D.D. (1984) Polysaccharides of Berberis vulgaris. Chemistry of NaturalCompounds, 20(1), 99-100.
  44. Mazandarani, M., Ghasemi, N. & Bait, E. (2013). Evaluation of the most important secondary materials and their comparison in various organs of Berberis vulgaris L. barberry in south east of Golestan province. Journal of Plant Science, 8 (5), 59-70.
  45. McDonald, S., Prenzler, P.D., Autolovich, M. & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 48-73.
  46. Mohamadi, M., Maskooki, A. M. & Mortazavi, S. A. (2012). Evaluation of antioxidant properties of Barberry fruits extracts using maceration and Subcritical Water Extraction (SWE). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6(9), 699-703.
  47. Mojaddar Langroodi A, Ebadi Fathabad A, Moulodi F, Mashak Z, Alizade Khaled Abad M. Antioxidant and Antimicrobial Activities of Aqueous and Ethanolic Extracts of Barberry and Zataria multiflora Boiss Essential Oil Against Some Food-Borne Bacteria (2018) J Kermanshah University of Medical Sciences. 22(2):e83087. doi: 10.5812/jkums.83087.
  48. Kafi M, Balandary A, Rashed-Mohasel, MH, Koochaki A, Molafilabi A (2002) Berberis: Production and Processing. Zaban va Adab Press, Iran, pp. 1–209 (In Persian).
  49. Montoro, P., Alessandra, B., Cosimo, P. & Nunziatina, D.T. (2005). Structure antioxidant activity relationships of flavonoids isolated from different plant species. Food Chemistry, 92, 349-355.
  50. Naziripour, Z., Haghighi, P., Jalilian Tabar, F. & Rescue Lorestani, A.S. (2012). Review of some mechanical properties of Barberry. Annual Scientific Conference of Razi University.
  51. NurAlam, M., Bristi, N.J. & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21, 143-152.
  52. Ozgen, M., Saracoglu, O. & Gecer, E. N. (2012). Antioxidant capacity and chemical properties of selected berberry fruits. Horticulture, Environment and Biotechnology, 53(6), 447-451.
  53. Pileh, F. & Ghasemzadeh, R. (2017). Diversity evaluation of biochemical parameters and antioxidant activity in some commercial grape cultivars. Research in Pomology, 2(1), 45-60.
  54. Qadir, S.A., Kwon, C.K., Han, J. G., Chung, H. S. and Ahn, J. & Lee, H. (2009). Effect of different ‎extraction rotocols on anticancer and antioxidant activities of Berberis koreana bark extracts. ‎Journal of Bioscience and Bioengineering, 107, 331-338.
  55. ‎Rezaei, M., Ebadi, A., Reim, S., Fatahi, R., Balandary, A., Farrokhi, N. & MagdaViola, H. (2011). ‎Molecular analysis of Iranian seedless barberries via SSR.‎‏ ‏Scientia Horticulturae, 129, 702-709.
  56. ‎Robertson, R.P. & Harmon, J.S. (2006). Diabetes, glucose toxicity, and oxidative stress: a case ‎of double jeopardy for the pancreatic islet β cell. Free Radical Biology Medicine, 41, 177-184.‎
  57. Rumbaoa, R.G.O., Cornago, D.F. & Geronimo, I.M. (2009). Phenolic content and antioxidant capacity of Philippine potato (Solanum tuberosum) tubers. Journal of Food Composition and Analysis, 22, 546-550.
  58. Sabir, M., Akhter, M.H. & Bhide, N.K. (1978). Further studies on pharmacology of berberin .Indian Journal ofPhysiology and Pharmacology, 22 (1), 9-13.
  59. Sagar, B.K. & Singh, R.P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48, 412-422.
  60. Sanchez-Moreno, C., Larrauri, J.A. & Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32, 407-412.
  61. Sasikumar, J.M., Maheshu, V., Smilin, A.G., Gincy, M.M. & Joji, C. (2012). Antioxidant and antihemolytic activities of common Nilgiri barberry (Berberis tinctoria Lesch.) from south India. International Food Research Journal, 19 (4), 1601-1607.
  62. Sayyah, M., Boostani, H., Pakseresht, S. & Malayeri, A. (2010) .Comparison of Silybum marianum L. with fluoxetine in the treatment of obsessive compulsive disorder. Progress in NeuroPsychopharmacology and Biological Psychiatry, 34, 362-365.
  63. Schaffer, S. & Heinrich, M. (2005). Understanding local Mediterranean diets: a multidisciplinary pharmacological and ethnobotanical approach. Pharmacology Research, 52, 353-366.
  64. Shahidi, F. (2000). Antioxidants in food and food antioxidants. Molecular Nutrition & Food Reserch, 44, 158-163.
  65. Shan, B., Cai, Y.Z., Sun, M. & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agriculture Food Chemistry, 53, 7749-7759.
  66. Sharifi, F. & Pourakbar, L. (2016). Comparison of antioxidant properties of fresh barberry in water and alcohol solvents. Iranian Journal of Food Science and Technology, 12 (2), 296-307.(In Persian).
  67. Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. Journal of Agriculture Food Chemistry, 40, 945-948.
  68. Šilic, C. (2005). Atlas of dendroflora (trees and shrub) of Bosnia and Herzegovina. Matica hrvatska Cˇitluk, Franjevacˇka kuc´a Masna Luka, C itluk (in Bosnian), 18(2), 160-161.
  69. Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R. & Dhaka, N. (2013). Potential applications of antioxidants-A review. Journal of Pharmacy Research, 7, 828-835.
  70. Soares, J.R., Dins, T.C.P., Cunha, A.P. & Almeida, L.M. (1997). Antioxidant activity of some extracts of Thymus zygis. Free Radical Research, 26, 469-478.
  71. Sun, L., Zhang, J., Lu, X., Zhang, L. & Zhang, Y. (2011). Evaluation to the antioxidant activity of total flavonoids extract from persimmon leaves. Food and Chemical Toxicology, 49, 2689-2696.
  72. Suzuki, M., Watanabe, T., Miura, A., Harashima, E., Nakagawa, Y. & Tsuji, K. (2002). An extraction solvent optimum for analyzing polyphenol contents by Folin-Denis assay. Journal of the Japanese Society for Food Science andTechnology, 49, 507- 511.
  73. Tehranifar, A., Zarei, M., Nemati, Z., Esfandiyari, B. & Vazifeshenas, M. R. (2010). Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Scientia Horticulturae, 126, 180-185.
  74. Then, M., Szentmihaly, K., Sarkozi, A. & Varga, I. S. (2003). Examination on antioxidant activity in greater celandine (Chelidonium majus L.) extracts by FRAP method. Acta Biologica Szegedinesis, 47(4), 115-117.
  75. Tomosaka, H., Salim, A. A., Keller, W. J., Chai, H. & Kinghorn, A. D. (2008). Antioxidant and cytoprotection from Berberis vulgaris. Phytotherapy Research, 22(7), 979-981.
  76. Trabelsi, N., Megdiche, W., Ksouri, R., Falleh, H., Oueslati, S., Soumaya, B., Hajlaoui, H. & Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43(4), 632-639
  77. Tusevski, O., Kostovska, A., Iloska, A., Trajkovska, L. & Simic, S.G. (2014). Phenolic production and antioxidant properties of some Macedonian medicinal plants. Cent Eurpean Journal of Biology, 9, 888-900.
  78. Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M. & Amir, R. (2007). Antioxidant activity, polyphenol content and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, 55(23), 9559-9570.
  79. Wanger, G.J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplast. Plant Physiology, 64, 88-93.
  80. Wojdylo, A., Oszmianski, J. & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949.
  81. Wongsa, P., Chaiwarit, J. & Zamaludien, A. (2012). In vitro screening of phenolic compounds, potential inhibition against α-amylase and α- glucosidase of culinary herbs in Thailand. Food Chemistry, 131, 964-971.
  82. Yildirim, A., Mavi, A. & Kara, A.A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49, 4083-4089.
  83. Zovko-Koncic, M., Kremer, D., Karlovic, K. & Kosalec, I. (2010). Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food and Chemical Toxicology, 48(2), 2176-2180.