تأثیر ترکیبات گاما آمینوبوتریک اسید، هیومیک اسید و سالیسیلیک اسید بر برخی از پاسخ‌های ‏مورفوفیزیولوژیکی و ویژگی آنتی اکسیدانی گیاه پروانش ‏Catharanthus roseus L. (G.DON).‎‏ ‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فیزیولوژی و اصلاح گل و گیاه زینتی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان

چکیده

گیاه پروانش (Catharantus roseus L.) از تیره Apocynaceae جزو گیاهان بسیار ارزشمند زینتی- دارویی می­باشد. به­منظور مطالعه اثر گاما آمینوبوتریک اسید، هیومیک اسید و سالیسیلیک اسید بر برخی از ویژگی­های گیاه پروانش، آزمایشی در قالب طرح کاملاً تصادفی در سه تکرار در دانشکده کشاورزی دانشگاه زنجان اجرا شد. تیمارهای آزمایش شامل گاما آمینوبوتریک اسید (5/0، 75/0و 1 میلی­مولار)، هیومیک اسید (50، 100و 150 میلی­گرم بر لیتر) و سالیسیلیک اسید (5/0، 1 و 2 میلی­مولار) بودند. همچنین گیاهان شاهد با آب مقطر تیمار شدند. نتایج نشان داد بیشترین ارتفاع گیاه، قطر ساقه و تعداد برگ در غلظت 5/0­ میلی­مولار گاما آمینوبوتریک اسید به‏‌‏دست آمد که تفاوت معنی­داری با تیمار شاهد داشت. کمترینتعداد روز تا گلدهی مربوط به تیمار 5/0 میلی­مولار سالیسیلیک اسید بود. کاربرد برگی تیمار دو میلی­مولار سالیسیلیک اسید تأثیر قابل توجهی در سطح احتمال یک درصد بر شاخص­های ارتفاع گیاه، قطر ساقه، میزان فنل و فعالیت آنزیم پراکسیداز و کاتالاز داشت. همچنین غلظت 150 میلی­گرم بر لیتر هیومیک اسید موجب افزایش معنی­دار صفات ارتفاع گیاه، قطر ساقه، روز تا گلدهی، فعالیت آنزیم‌های پراکسیداز و کاتالاز نسبت به تیمار شاهد شد. در بین تیمارها، غلظت 50 میلی­ گرم بر لیتر هیومیک اسید بیشترین تأثیر را بر مقدار فلاونوئید داشت. همچنین بیشترین فعالیت آنزیم کاتالاز در تیمار دو میلی­مولار سالیسیلیک اسید و بیشترین فعالیت آنزیم پراکسیداز در تیمارهای یک میلی­مولار گاما آمینوبوتریک اسید و دو میلی­مولار سالیسیلیک اسید مشاهده شد. بنابراین استفاده از گاما آمینوبوتریک اسید، هیومیک اسید و سالیسیلیک اسید توانست موجب بهبود عملکرد و شاخص­های فیزیولوژیکی در گیاه پروانش گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of ϒ-aminobutyric acid (GABA), humic acid and salicylic acid on some ‎morphophysiological responses and antioxidant characters of Catharanthusroseus L‏.‏‎ (G.Don)‎

نویسندگان [English]

  • Elahe Bayanloo 1
  • Mitra Aelaei 2
  • Mohsen Sanikhani 2
1 Former M. Sc. Student, Faculty of Agriculture, Department of Horticultural Science, University of Zanjan, Zanjan, Iran
2 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Periwinkle plant Chatarantus roseus L. from Apocynaceae family is one of the valuable ornamental-medicinal plants. In order to evaluate the effects of ϒ-aminobutyric acid, humic acid and salicylic acid on some characteristics of periwinkle an experiment was conducted based on complete randomized design (CRD) with three replications at Agriculture Faculty university of Zanjan. Treatments included ϒ-aminobutyric acid (0.5, 0.75 and 1 mM), humic acid (50, 100 and 150 mg.L-1) and salicylic acid (0.5, 1 and 2 mM). The results showed that highest plant height, stem diameter and leaf number was achieved 0.5mM concentration of ϒ-aminobutyric acid which had a significant difference whit the control treatment. The lowest days to flowering were 0.5 mM salicylic acid. Foliar application of 2 mM salicylic acid was significant (p<0.01) on plant height, stem diameter, phenol, peroxidase and catalase activities in compared to the control treatment. Between the different treatments, the concentration of 50 mg.L-1humic acid had the highest effect on flavonoids content. Also, plant height, stem diameter, day to flowering, peroxidase and catalase activity significantly increased in the concentration of 150 mg.L-1 humic acid compared to control treatment. Between all treatments, the highest catalase activity was observed in 2 mM salicylic acid and the highest peroxidase activity was observed in 1 ϒ-aminobutyric acid and 2 mM salicylic acid treatments. Therefore, the yield, physiological and phytochemical indices of the periwinkle improved by using of ϒ-aminobutyric acid, humic acid and salicylic acid.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • flavonoids
  • growth indices
  • phenol
  1. Alaey, M., Babalar, M., Naderi, R. & Kafi, M. (2011). Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94.
  2. Aghdam, M. S., Naderi, R., Sarcheshmeh, M. A. A. & Babalar, M. (2015). Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Postharvest Biology and Technology, 110, 70-76.
  3. Aghdam, M. S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M. A. A. & Babalar, M. (2016). Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Scientia Horticulturae, 198, 52-60.
  4. Aghdam, M. S., Razavi, F. & Karamneghad, F. (2016). Maintaining the postharvest nutritional quality of peach fruits by γ-aminobutyric acid. Iranian Journal of Plant Physiology, 5(4).
  5. Aghdam, M. S. & Fard, J. R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650-1657.
  6. Ali, M. B., Khatun, S., Hahn, E. J. & Paek, K. Y. (2006). Enhancement of phenylpropanoid enzymes and lignin in Phalaenopsis orchid and their influence on plant acclimatisation at different levels of photosynthetic photon flux. Plant Growth Regulation, 49(2-3), 137-146.
  7. Abreu, M.E. & Munné-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64(2), 105-112.
  8. Aiyafar, S., Minab Poudineh, H. & Forouzandeh, M. (2015). Effect of Humic Acid on Qualitative and Quantitative Characteristics and Essential Oil of Black Cumin (Nigella sativa L.) under Water Deficit Stress. Journal of Science, 4(2), 2277-5641.
  9. Agarwal, S., Sairam, K. R., Srivastava, Aruna, G. C. T. &Meena, C. R. (2005). Role of ABA, Salicylic acid, calcium and hydrogen peroxide on antioxidant enzyme induction in wheat seedlings. Journal Plant Sciences, 169, Pp. 559-570.
  10. Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P. (1985). Humic substances in soil, sediment, and water: geochemistry, isolation and characterization. John Wiley & Sons.
  11. Alaey, M., Babalar, M., Naderi, R. & Kafi, M. (2011). Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94.
  12. Allahverdizadeh, N. & Nazarideljou, M. (2013). Effect of humic acid on morphological indices, nutrient uptake and survival time after flower harvest (Calendula officinalis cv. Crysantha) in hydroponic system. Journal of Science and Technology of Greenhouse Culture, 5(2), 133-143. (in Farsi)
  13. Arancon, N. Q., Lee, S., Edwards, C. A. & Atiyeh, R. (2003). Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiologia, 47(5-6), 741-744.
  14. Arora, A., Sairam R. K. & Srivastave, G. C. (2002).Oxidayive stress and antioxidative system in plants.Current Science, 82 (10), 1227-1238.
  15. Ashrafuzzaman, M., Razi Ismail, M., Abdullah IbnaFazal, K. M., Uddin, M. K. & Prodhan A. K. M. A. (2010).  Effect of GABA Application on the Growth and Yield of Bitter Gourd (Momordica charantia). International Journal of Agriculture & Biology, 12(1), 129-132.
  16. Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q. & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84(1), 7-14.
  17. Bahrami, S., Soleimani, A. & Habibi, F. (2015). The effect of humic acid on the mineral composition leaves, yield and fruit quality apple variety 'Granny Smith' (Malus domestica L. cv. Granny Smith). Journal of Crops, 17(2), 529-517. (in Farsi)
  18. Barbosa, J., Singh, N., Cherry, J. & Locy, R. (2010). Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry, 48, 443-450.
  19. Buchanan‐Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T. & Pink, D. (2003). The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnology Journal, 1(1), 3-22.
  20. Bouché, N., Lacombe, B. & Fromm, H. (2003). GABA signaling: a conserved and ubiquitous mechanism. Trends in Cell Biology, 13(12), 607-610.
  21. Bouche, N. & Fromm, H. (2004). GABA in plants: just a metabolite?. Trends in Plant Science, 9(3), 110-115.
  22. Bown, A. W. & Shelp, B. J. (1997). The metabolism and functions of [gamma]-aminobutyric acid. Plant Physiology, 115(1), 1.
  23. Bown, A., Hall, D. & MacGregor, K. (2002). Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiology, 129, 1430-1434.
  24. Carvajal, F., Palma, F., Jamilena, M. & Garrido, D. (2015). Preconditioning treatment induces chilling tolerance in zucchini fruit improving different physiological mechanisms against cold injury. Annals of Applied Biology, 166(2), 340-354.
  25. Castilla, N. & Lopez-Galvez, J. (1994). Vegetable crop responses in improved low-cost plastic greenhouses. Journal of Horticultural Science, 69(5), 915-921.
  26. Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal Food Drug Analaysis, 10, 178-182.
  27. Chen, Y., De Nobili, M. & Aviad, T. (2004). Stimulatory effect of humic substances on plant growth. Soil Organic Matter in Sustainable Agriculture, 103-130.
  28. Chen, J.Y., Wen, P.F., Kong, W.F., Pan, Q.H., Zhan, J.C., Li, J.M., Wan, S.B. & Huang, W.D. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology, 40(1), 64-72.
  29. Chen, J., Zhu, C., Li, L. P., Sun, Z. Y. & Pan, X. B. (2007). Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences, 19(1), 44-49.
  30. Cheng, S. Y., Xu, F. & Wang, Y. (2009). Advances in the study of flavonoids in Ginkgo biloba leaves. Journal of Medicinal Plants Research, 3(13), 1248-1252.
  31. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57(5), 779-795.
  32. Deewatthanawong, R., Rowell, P. & Watkins, C. (2010). γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Biology and Technology, 57, 97-105.
  33. Ding, C. K., Wang, C. Y., Gross, K. C. & Smith, D. L. (2001). Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science, 161(6), 1153-1159.
  34. Dixon, R. A. & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085.
  35. Fait, A., Fromm, H., Walter, D., Galili, G. & Fernie, A. R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13(1), 14-19.
  36. Gharib, F. A. (2006). Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. International Journal Agriculture Biology, 4, 485-492.
  37. Galal, A. (2012). Improving effect of salicylic acid on the multipurpose tree Ziziphusspina-christi (L.) Willd Tissue Culture. American Journal of Plant Sciences, 3(7), 947-952.
  38. Ghamsari, L., Keyhani, E. & Golkhoo, S. (2007). Kinetics properties of guaiacol peroxidase activity in Crocus sativus L. corm during rooting. Iranian Biomedical Journal, 1, 137-146. (in Farsi)
  39. Guleria, S., Sohal, B. S. & Mann, A. P. S. (2005). Salicylic acid treatment and/or Erysiphe polygoni inoculation on phenylalanine ammonia-lyase and peroxidase content and accumulation of phenolics in pea leaves. Journal of Vegetable Science, 11(2), 71-79.
  40. Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G. & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728-736.
  41. Hatamzadeh, A., Hatami, M. & Ghasemnezhad, M. (2012). Efficiency of salicylic acid delay petal senescence and extended quality of cut spikes of Gladiolus grandiflora cv wings sensation. African Journal of Agricultural Research, 7(4), 540-545.
  42. Hayat, A. & Ahmad, T. (2007). Salicylic acid a plant hormone, salicylic acid: biosynthesis, metaboilism and physiological role in plant. Journal Scientia Horticulturae, 110, 97–98. (In Farsi).
  43. Hassan, F. A. S. & Ali, E. F. (2014). Protective effects of 1-methylcyclopropene and salicylic acid on senescence regulation of gladiolus cut spikes. Scientia Horticulturae, 179, 146-152.
  44. Hayat, Q., Hayat, Sh., Irfan, M. & Ahmad. A. (2010). Effect of exogenous salicylic acid under changing enveironment. A review. Enviromental and Experimental Botany, 68, 14-25. (in Farsi).
  45. Jabbarzadeh, Z., Khosh-Khui, M. & Salehi, H. (2009). The effect of foliar-applied salicylic acid on flowering of African violet. Australian Journal of Basic and Applied Sciences, 3(4), 4693-4696.
  46. Kabiri, R., Farahbakhsh, H. & Nasibi, F. (2012). Salicylic acid ameliorates the effectsof oxidative stress induced by water deficit inhydroponic culture of Nigella sativa. Journalof Stress Physiology and Biochemistry, 12(11), 1420-1425. (in Farsi)
  47. Kalidass, C., Ramasamy Mohan, V. & Daniel, A. (2010). Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. (apocynaceae). Tropical and Subtropical Agroecosystems, 12(2).
  48. Kamali, M., Kharazi, S. M., Selahvarzi, Y. & Tehranifar, M. (2013). Effect Salicylic asid on growth and some morpho-physiological traits of Gompherna globosa L. under salt stress.  Journal of Horticulture Science (Agricultural Sciences and Technology), 26(1), 104-112. (in Farsi)
  49. Kathiresan, A., Tung, P., Chinnappa, C.C. & Reid, D.M. (1997). ϒ-aminobutyric acid Stimulates Ethylene Biosynthesis in Sunflower. Plant physiology, 115(1), 129-135.
  50. Khaligi, A. (2008). Iranian Ornamental Plants. Roozbahan publication. Tehran. 140. (in Farsi)
  51. Kinnersley, A.M. & Turano, F.J. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479-509.
  52. Koushesh Saba, M., Arzani, K. & Barzegar, M. (2012). Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. Journal of Agricultural and Food Chemistry, 60(36), 8947-8953.
  53. Kováčik, J., Bačkor, M. & Kadukova, J. (2008). Physiological responses of Matricaria chamomilla to cadmium and copper excess. Environmental Toxicology, 23(1), 123-130.
  54. Kováčik, J., Grúz, J., Bačkor, M., Strnad, M. & Repčák, M. (2009). Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28(1), 135.
  55. Kumar, D., Mishra, D. S., Chakraborty, B. & Kumar, P. (2013). Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. Journal of Food Science and Technology, 50(4), 797-802.
  56. Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V. & Hüner, N. P. (2015). Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(2-3), 221-235.
  57. Li, W., Liu, J., Ashraf, U., Li, G., Li, Y., Lu, W., Gao, L., Han, F. & Hu, J. (2016) Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize. Front. Plant Science, 7,919.
  58. Liu, J., Tong, L. P., Shen, T. W., Li, J., Wu, L. & Yu, Z. L. (2007). Impact of ion implantation on licorice (Glycyrrhize uralensis Fisch) growth and antioxidant activity under drought stress. Plasma Science and Technology, 9 (3), 301-306.
  59. Luo, H. Y., Gao, H. B., Xia, Q. P., Gong, B. B. & Xiao-Lei ,W. U. (2011). Effects of exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stress. Scientia Agricultura Sinica, 34, 37-544.
  60. Maleki, M. S. & Ehsanpour, A. A. (2018). Effect of salicylic acid on total phenol, flavonoid, anthocyanin and PAL and TAL enzymes in tomato (Solanum lycopersicum Mill) plants. Iranian Journal of Plant Biology, 9(4), 55-67.
  61. Mardani, H., Bayat, H. & Azizi, M. (2011). Effects of salicylic acid application on morphological and physiological characteristics of cucumber Seedling (Cucumis sativus cv. super dominus) under drought stress. Journal of Horticulture Science (Agricultural Sciences and Technology), 25(3), 320-326. (in Farsi with English abstract)
  62. Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T. & Larque-Saavedra, A. (2005). Positive effect of salicylates on the flowering of African violet. Scientia Horticulturae, 103(4), 499-502.
  63. Masclaux‐Daubresse, C., Valadier, M.H., Carrayol, E., Reisdorf‐Cren, M. & Hirel, B. (2002). Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant, Cell and Environment, 25(11), 1451-1462.
  64. Meda, A., Lamien, C.E., Romito, M., Millogo, J. & Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577.
  65. Mirzaei Mashhoud, M., Aelaei, M. & Mortazavi, S. N. (2015). γ-Aminobutyric acid (GABA) treatment improved postharvest indices and vase-life of'Red Naomi'rose cut flowers. In: III International Conference on Quality Management in Supply Chains of Ornamentals, (May, 2015).1131 (pp. 33-40).
  66. Miyashita, Y. & Good, A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 92-102.
  67. Barzegar, T., Moradi, P., Hasanzadeh, Z., Ghahremani., Z. & Nikbakht., J. (2018). Evaluation of Growth, Yield and Vitamin C Content of Okra with Application of Putrescine and Humic Acid Under Deficit Irrigation Stress. Journal of Agricultural Science and Sustainable Production, 28(1), (in Farsi)
  68. Muscolo, A., Sidari, M. & Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 129, 57-63.
  69. Mutlu, S., Atici, Ö. & Nalbantoglu, B. (2009). Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53(2), 334-338.
  70. Nardi, S., Pizzeghello, D., Reniero, F. & Rascio, N. (2000). Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Biology and Biochemistry, 22(1), 112-117.
  71. Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34(11), 1527-1536.
  72. Nikbakht, A., Kafi, M., Babalar, M., Xia, Y. P., Luo, A. & Etemadi, N. A. (2008). Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31(12), 2155-2167.
  73. Omidbeigi, R. (2010). Production and processing of medicinal plants. Ed2. Astane Ghodse Razavi, Mashad, 347. (in Farsi)
  74. Pacheco, A.C., Cabral, C., Fermino, E.S. & Aleman, C.C. (2013). Salicylic acid induced changes to growth, flowering and flavonoids production in marigold plants. Global Journal of Medicinal Plant Reserch, 1(1), 95-100.
  75. Padem, H., Ocal A. & Alan, R. (1999). Effect of humic acid added foliar fertilizer on quality and nutrient content of eggplant and pepper seedlings. ISHS Acta Horticultural, 491, 241-246.
  76. Palma, F., Carvajal, F., Ramos, J. M., Jamilena, M. & Garrido, D. (2015). Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: Contribution of GABA shunt and other related nitrogen metabolites. Postharvest Biology and Technology, 99, 131-140.
  77. Pérez-Balibrea, S., Moreno, D. A. & García-Viguera, C. (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry, 129(1), 35-44.
  78. Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research, 1-17.
  79. Pietrosiuk, A., Furmanowa, M. & Łata, B. (2007). Catharanthus roseus: micropropagation and in vitro techniques. Phytochemistry Reviews, 6(2-3), 459-473.
  80. Popova, L., Pancheva, T. & Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23(1-2), 85-93.
  81. Raad, M. T., Balaket, A. & Mohson Salman, A. (2014). Effect of humic acid and water quality on peroxidase and catalase enzymes activity in leaves of data palms c.v barhee. Global Journal of Bio- Science and Biotechnology,3(4), 402-405.
  82. Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Biology, 43(1), 439-463.
  83. Rajeshwari, V. & Bhuvaneshwari, V. (2017). Enhancing Salinity Tolerance in Brinjal Plants by Application of Salicylic Acid. Journal of Plant Sciences, 12(1), 46-51.
  84. Rai, K. K., Rai, N. & Rai, S. P. (2018). Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. Plant Physiology and Biochemistry, 128, 72-88.
  85. Rice-Evans, C. A., Miller, N. J. & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
  86. Rothan, C., Duret, S., Chevalier, C. & Raymond, P. (1997). Suppression of ripening-associated gene expression in tomato fruits subjected to a high CO2 concentration. Plant physiology, 114(1), 255-263.
  87. Rubio, V., Bustos, R., Irigoyen, M. L., Cardona-Lopez, X., Rojas-Triana, M. & Paz-Ares, J. (2009). Plant hormones and nutrient signaling.Plant Molecular Biolojy, 69(4), 361-73.
  88. Sabzevari, S. & Khazaei, H. R. (2009). Effect of foliar application of humic acid on growth and yiel properties of Triticumaestivum L. Cv. Pishtaz. Agroecology Journal, 1(2), 53-63.
  89. Saeed, T., Hassan, I., Abbasi, N. A. & Jilani, G. (2016). Antioxidative activities and qualitative changes in gladiolus cut flowers in response to salicylic acid application. Scientia Horticulturae, 210, 236-241.
  90. Samavat, S. & Malakuti, M. J. (2004). The need to use organic acids (humic and fluvianum) in the quantitative and qualitative increase of agricultural product. Technical Journal of Soil and Water Research Institute, 1-13, 345. (in Farsi)
  91. Samsuzzaman, M. (2004). Effect of NAA and GABA on growth and yield contributing characters of groundnut (Doctoral dissertation). M.Sc. thesis, Dept. Crop Bot., Bangladesh Agriculture. University of Mymensingh, Bangladesh).
  92. Senn, T.L. & Kingman, A.R. (1973). A review of humus and humic acids. Research Series Report, (145).
  93. Seo, S., Ishizuka, K. & Ohashi, Y. (1995). Induction of salicylic acid β-glucosidase in tobacco leaves by exogenous salicylic acid. Plant and Cell Physiology, 36(3), 447-453.
  94. Seyed Hajizadeh, H. & Aliloo, A. A. (2013). The effectiveness of per-harvest salicylic acid application on physiological traits in Lilium (Lilium longiflorum L.) cut flower. International Journal Science Environment, 1(12), 344-350. (in Farsi)
  95. Shan, T., Jin, P., Zhang, Y., Huang, Y., Wang, X. & Zheng, Y. (2016). Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Postharvest Biology and Technology, 114, 104-110.
  96. Shang, L., Dong, S. & Nienhaus, G.U. (2011). Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today, 6(4), 401-418.
  97. Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F. & Zhang, S.G. (2010). Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant, Cell and Environment, 33(2), 149-162.
  98. Shi, Q. & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326.
  99. Tan, Y., Liang, Z., Shao, H. & Du, F. (2006). Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids and surfaces B: Biointerfaces, 49(1), 60-65.
  100. Tayefi-Nasrabadi, H., Dehghan, G., Daeihassani, B., Movafegi, A. & Samadi, A. (2011). Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L. cv.) cultivars. African Journal of Biotechnology, 10(5), 751-763.
  101. Thaipong, K., Boonprakob, U., Crosby, K., Zevallosc, L. C. & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675.
  102. Türkmen, Ö., Dursun, A., Turan, M. & Erdinç, Ç. (2004). Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditionspp. Acta Agriculture Scandinavica, 7, 168-174.
  103. Veronica, M., Eva, B., Angel-Maria, Z., Elena, A., Maria, G., Marta, F. & Jose´-Maria, G. M. (2010). Action of humic acid onpromotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distributionof cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, 167, 633-642.
  104. Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S. & Du, R. (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132-137.
  105. Wendell, K. L., Wilson, L. & Jordan, M. A. (1993). Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. Journal of Cell Science, 104(2), 261-274.
  106. Yin, Y. G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., ... & Matsukura, C. (2010). Metabolic alterations in organic acids and γ-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits. Plant and Cell Physiology, 51(8), 1300-1314.
  107. Zaky, M. H., El-Zeiny, O. A. H. & Ahmed, M. E. (2006). Effects of humic acids on growth and productivity of bean plants grown under plastic low tunnels and open field. Egyptian Journal of Basic and Applied Sciences, 21(4), 582-596.
  108. Zarinkamar, F., Zaviehjak, A. A., Sharifi, M. & Behmanesh, M. (2013). Effect of salicylic acid on flavonoids, apigenin, anthocyanin and carbohydrate in Matricaria chamomilla L. Journal of Plant Biology, 5(17),67-74. (in Farsi)
  109. Zhang, X., Ervin, E. H. & Schmidt, R. E. (2003). Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. Journal of the American Society for Horticultural Science, 128(4), 492-496.