بهینه‌سازی باززایی گیاهان حاصل از جنین‌زایی سوماتیکی در شش رقم انگور ‏‎(Vitis vinifera L.)‎

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم باغبانی، دانشکده کشاورزی دانشگاه بوعلی سینا، همدان، ایران ‏

2 دانشیار، گروه علوم باغبانی، دانشکده کشاورزی دانشگاه بوعلی سینا، همدان، ایران ‏

چکیده

هدف از این پژوهش افزایش راندمان باززایی در برخی رقم‌های انگور تجاری بود. به این منظور از کالوس جنین‌زای حاصل از بساک نابالغ شش رقم انگور شامل بیدانه سفید، بیدانه قرمز، فخری، عسکری، یاقوتی و تامسون سیدلس استفاده شد. کالوس جنین‌زا در محیط کشت MS بدون هورمون کشت شد و بالاترین تعداد جنین سوماتیکی در رقم بیدانه سفید مشاهده شد. سپس جنین‌های سوماتیکی در محیط کشت MS تحت دو ترکیب هورمونی 5/0 میکرومولار بنزیل آمینو پورین (BAP) و 1/0 میکرومولار نفتالین استیک اسید (NAA) + 5/2 میکرومولار بنزیل آمینو پورین (BAP) برای جوانه‌زنی قرار گرفتند. در طول جوانه‌زنی در هر دو محیط کشت، گیاهان با رشد غیرطبیعی رأس شاخه و ریشه مشاهده شدند؛ همچنین در محیط کشت حاوی 1/0 میکرومولار NAA و 5/2 میکرومولار BAP گیاهان با ریشه طویل و رأس شاخه غیرطبیعی مشاهده شد. درصد جنین‌های طبیعی در دو محیط جوانه‌زنی وابسته به نوع رقم بود، به ‌طوری‌ که درصد جوانه‌زنی طبیعی در رقم عسکری تفاوت معنی‌داری در دو محیط کشت نداشت، ولی در سایر رقم‌ها این درصد در محیط کشت حاوی 5/0 میکرومولار BAP بالاتر بود. بعد از چهار هفته گیاهان به دو محیط کشت باززایی MS و WPM که هر دو حاوی 5/0 میکرومولار BAP بودند، انتقال یافتند. درصد باززایی روی محیط WPM (87/76 درصد) نسبت به محیط MS (27/59 درصد) بالاتر بود. در بین رقم‌های مورد بررسی، بالاترین درصد باززایی در رقم‌های عسکری (4/94 درصد)، بیدانه سفید (85/83 درصد) و تامسون سیدلس (66/80 درصد) به­دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing plant regeneration through somatic embryogenesis in six grapevine (Vitis ‎vinifera L.) cultivars

نویسندگان [English]

  • Razieh Rostami 1
  • Ahmad Ershadi 2
1 Ph.D. Candidate, Department of Horticultural Science, Faculty of Agriculture, University of Bu-Ali Sina, ‎Hamedan, Iran ‎
2 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran ‎
چکیده [English]

The purpose of the study was to improve plant regeneration efficiency in some commercial grapevine cultivars. To achieve this goal, embryogenic callus from immature anthers of six grapevine cultivars: ‘Bidaneh Sefid’, ‘Bidaneh Ghermez’, ‘Fakhri’, ‘Askari’, ‘Yaghuti’ and ‘Thompson Seedless’ were used. Embryogenic calli were cultured in plant growth regulator-free MS medium and the highest number of somatic embryos was observed in Bidaneh Sefid cultivar. Then, somatic embryos were transferred to two germination media: 1. MS medium containing 0.5 μM BAP and 2. MS medium containing 0.1 μM NAA plus 2.5 μM BAP. Plants with abnormal shoot and root apex were observed during germination; embryos with long root and abnormal shoot apex were also observed on medium containing 0.1 μM NAA plus 2.5 μM BA. There was no significant difference between the percentages of normal germination in ‘Askari’ on both media; however, higher normal germination was found on medium containing 0.5 μM BAP in other cultivars. After four weeks, plants were transferred to the MS and WPM media, both were supplemented with 0.5 μM BAP. Plants were transferred to regeneration media after four weeks. The regeneration percentage on WPM medium (76.87%) was higher than on MS medium (59.27%). Maximum percentage of regeneration was obtained from Askari (94.40%), Bidaneh Sefid (83.85%), Thomson Seedless (80.66%) and Bidaneh Ghermez (76%) on WPM.

کلیدواژه‌ها [English]

  • Anther
  • embryogenic callus
  • germination
  • normal plants
  • WPM medium
  1. Bharathy, P. & Agrawal, D. (2008). High frequency occurrence of single cotyledonary embryo morphotype and repetitive somatic embryogenesis in ‘Thompson Seedless’ crossed with seven grapevine male parents. Vitis, 47,169-174.
  2. Dai, L., Zhou, Q., Li, R., Du, Y., He, J., Wang, D., Cheng, S., Zhang, J. & Wang, Y. (2015). Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. Chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Organ Culture, 121, 397-412.
  3. Das, D. K., Nirala, N. K., Reddy, M. K., Sopory, S. K. & Upadhyaya, K. C. (2006). Encapsulated somatic embryos of grape (Vitis vinifera L.): an efficient way for storage and propagation of pathogen-free plant material. Vitis, 45,179-184.
  4. Dhekney, S. A., Li, Z. T., Compton, M. E. & Gray, D. J. (2009). Optimizing initiation and maintenance of Vitis embryogenic cultures. HortScience, 44(5), 1400-1406.
  5. Ebadi, A., Jamal Mahmod, A., Mirmasomi, M. & Omidi, M. (2012a). Somatic embryogenesis and plant regeneration from anhter culture in some grapevine (Vitis vinifera L.). Journal of Horticultural Science and Technology, 12 (2), 241-252. (in Farsi)
  6. Ebadi, A., Jamal Mahmod, A., Mirmasomi, M. & Omidi, M. (2012b). Grapevine regeneration (Vitis vinifera L.) through somatic embryogenesis from whole flowers as explant. Journal of Horticultural Science, 25 (4), 417-424. (in Farsi)
  7. Faure, O., Aarrouf, J. & Nougaréde, A. (1996). Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): proembryogenesis. Annals of Botany, 78, 23-28.
  8. Franks, T., Botta, R. & Thomas, M. (2002). Chimerism in grape: implications for cultivar identity, ancestry and genetic improvement. Theoretical and Applied Genetics, 104, 192-199.
  9. Gambino, G., Bondaz, J. & Gribaudo, I. (2006). Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. European Journal of Plant Pathology, 114, 397-404.
  10. Gambino, G., Ruffa, P., Vallania, R. & Gribaudo, I. (2007). Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tissue Organ Culture, 90, 79-83.
  11. Gribaudo, I., Gambino, G. & Vallania, R. (2004). Somatic embryogenesis from grapevine anthers: the optimal developmental stage for collecting explants. American Journal of Enology and Viticulture, 55, 427-430.
  12. Jamal Mahmod, A., Ebadi, A., Mirmasomi, M. & Omidi, M. (2015). Somatic embryogenesis and plant regeneration with from ovaries in Yaghoti, White seedless, Shahrodi and Flame seedless grapevine cultivars. Iranian Journal of Horticultural Science, 45(4), 345- 352. (in Farsi)
  13. Ji, W., Luo, Y., Guo, R., Li, X., Zhou, Q., Ma, X. & Wang, Y. (2017). Abnormal somatic embryo reduction and recycling in grapevine regeneration. Journal of Plant Growth Regulation,36(4), 912-918.
  14. Jiménez, V. M. & Bangerth, F. (2000). Relationship between endogenous hormone levels of grapevine callus cultures and their morphogenetic behaviour. Vitis, 39, 151-157.
  15. Kikkert, J. R., Striem, M. J., Vidal, J. R., Wallace, P. G., Barnard, J. & Reisch, B. I. (2005). Long term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp.) genotypes. In Vitro Cellular & Developmental Biology- Plant, 41, 232-239.
  16. Lloyd, G. & McCown, B. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. In:Combined Proceedings of International Plant Propagators' Society,  20-22 Dec., Ohio, USA, pp. 421-427.
  17. López-Pérez, A. J., Carreño, J., Martínez-Cutillas, A. & Dabauza, M. (2005). High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis, 44 (2), 79-85.
  18. López-Pérez A., Carreóo, J. & Dabauza M. (2006). Somatic embryo germination and plant regeneration of three grapevine cvs: Effect of IAA, GA. Vitis, 45, 141-143.
  19. Lu, M. (2005). Micropropagation of Vitis thunbergii Sieb. et Zucc., a medicinal herb, through high-frequency shoot tip culture. Scientia Horticulturae, 107, 64-69.
  20. Maillot, P., Kieffer, F. & Walter, B. (2006). Somatic embryogenesis from stem nodal sections of grapevine. Vitis, 45 (4), 185-189.
  21. Merkle, S. A. & Wiecko, A. T. (1990). Somatic embryogenesis in three magnolia species. Journal of the American Society for Horticultural Science, 115, 858-860.
  22. Morgana, C., Di Lorenzo, R. & Carimi, F. (2004). Somatic embryogenesis of Vitis vinifera L. (cv. Sugraone) from stigma and style culture. Vitis, 43(4), 169-173.
  23. Motoike, S. Y., Skirvin, R. M., Norton, M. A. & Otterbacher, A. G. (2001). Somatic embryogenesis and long term maintenance of embryogenic lines from fox grapes. Plant Cell, Tissue and Organ Culture, 66, 121-131.
  24. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  25. Nitsch, J. P. & Nitsch, C. (1969). Haploid plants from pollen grains. Science, 163, 85-87.
  26. Olah, R., Anik, Z., Andrzej, P., Howard, S. & Kovacs, L. G. (2009). Somatic embryogenesis in a broad spectrum of grape genotypes. Scientia Horticulturae, 120, 134-137.
  27. Perl, A., Saad, S., Sahar N. & Holland, D. (1995). Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars-a synergistic effect of auxins and the role of abscisic acid. Plant Science, 104, 193-200.
  28. Perrin, M., Gertz, C. & Masson, J. E. (2004). High efficiency initiation of regenerable embryogenic callus from anther filaments of 19 grapevine genotypes grown worldwide. Plant Science,167, 1343-1349.
  29. Perrin, M., Martin, D., Joly, D., Demangeat, G., This, P. & Masson, J. E. (2001). Medium- dependent response on grapevine somatic embryogenic cells. Plant Science, 161, 107-116.
  30. Prado, M. J., Grueiro, M. P., González, M. V., Testillano, P. S., Dominguez, C., López, M. & Rey, M. (2010). Efficient plant regeneration through somatic embryogenesis from anthers and ovaries of six autochthonous grapevine cultivars from Galicia (Spain). Scientia Horticulturae, 125, 342-352.
  31. Sezgin, M. & Dumanoğlu, H. (2014). Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill.). In Vitro Cellular & Developmental Biology- Plant, 50, 58-68.
  32. Vidal, J. R., Rama, J., Taboada, L., Martin, C., Ibañez, M., Segura, A. & González-Benito, M. E. (2009). Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tissue Organ Culture, 96, 85-94.
  33. Wang, Q., Gafny, R., Sahar, N., Sela, I., Mawassi, M., Tanne, E. & Perl, A. (2002). Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Science, 162(4), 551-558.
  34. Xu, Z-Sh., Yu, Z-Y., Zhang, M., Zhang, Z. & Tao, J-M. (2014). Plant regeneration via somatic embryogenesis from solid and suspension cultures of Vitis vinifera L. cv. ‘Manicure Finger’. In Vitro Cellular and Developmental Biology- Plant, 50, 249-256.
  35. Zhou, Q., Dai, L., Cheng, S., He, J., Wang, Dan., Zhang, J. & Wang, Y. (2014). A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv.Thompson Seedless. Plant Cell Tissue Organ Culture, 118, 157-168.