تعیین اجزای عملکرد گردوی ایرانی و مطالعه همبستگی آن با صفات فنولوژیک، مورفولوژیک و بیوشیمیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه باغبانی، پردیس ابوریحان، دانشگاه تهران، ایران

2 استاد، گروه باغبانی، پردیس ابوریحان، دانشگاه تهران، ایران

چکیده

برآورد ضرایب همبستگی بین صفات مختلف، نه­تنها می­تواند سبب تسریع برنامه­های اصلاحی گردو شود، بلکه امکان بهبود سایر صفات را در کنار اصلاح برای صفات موردنظر فراهم می­کند. بدین منظور، داده­های حاصل از دو سال ارزیابی مورفولوژیک 325 ژنوتیپ­های انتخابی از استان­های فارس، مازندران و ایلام جهت مطالعه همبستگی بین صفات مورفولوژیک مورد استفاده قرار گرفت. همچنین به منظور مطالعه همبستگی بین صفات بیوشیمیایی و مورفولوژیک، خصوصیات بیوشیمیایی تعداد 52 ژنوتیپ برتر از 325 ژنوتیپ اولیه مورد ارزیابی قرار گرفت. بررسی نتایج این پژوهش نشان داد که رابطه­ی خطی و معنی‌داری بین صفات فنولوژیک به­ویژه تاریخ برگدهی با تاریخ برداشت وجود داشت که از آن می­توان جهت تعیین تاریخ برداشت بر مبنای تاریخ برگدهی استفاده کرد. عملکرد با تاریخ برگدهی (**58/0)، وزن میوه (**64/0) و مغز (*46/0)، اندازه میوه (**56/0) و عادت باردهی جانبی (**53/0) همبستگی مثبت و با رنگ مغز (*38/0-) همبستگی منفی داشت که با توجه به نتایج حاصل رگرسیون گام به گام، عادت باردهی جانبی، وزن میوه و شاخص اندازه میوه از اجزای اصلی تعیین کننده عملکرد گردو بودند. بررسی همبستگی بین صفات بیوشیمیایی با ارتفاع از سطح دریا و صفات مورفولوژیک نشان داد که درصد روغن و پروتئین موجود در مغز گردو تحت تأثیر خصوصیات فیزیکی میوه (اندازه و وزن میوه و مغز) نمی­باشد. در مقابل، با افزایش ارتفاع از سطح دریا، درصد روغن و پروتئین موجود در مغز افزایش یافت. همبستگی منفی و معنی­داری بین میزان اسیدهای چرب غیراشباع با یک باند مضاعف (MUFA) و اسیدهای چرب غیراشباع با چند باند مضاعف (PUFA) و همچنین بین نسبت PUFA:SFA با ضخامت پوست سخت مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Persian walnut yield components and its correlation with ‎phenological, morphological and biochemical traits

نویسندگان [English]

  • Saadat Sarikhani Khorami 1
  • Kourosh Vahdati 2
1 Assistant Professor, Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
2 Professor, Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
چکیده [English]

Estimation of correlation coefficients can accelerate walnut breeding programs and provide the ability to improve other traits along with targeted breeding traits. For this purpose, data obtained from two-year morphological evaluation of 325 screened genotypes from Fars, Mazandaran and Ilam provinces were used to study the correlation between morphological traits. In addition, in order to study the correlation between biochemical and morphological traits, biochemical characteristics of 52 superior genotypes out of 325 screened genotypes were evaluated for one year. Based on the results, a linear and strong relation was observed between phenological traits especially budbreak and harvest date. Yield had a positive and strong correlation with budbreak date (0.58**), nut weight (0.64**), kernel weight (0.46*), nut size (0.56**) and lateral bearing (0.53**) and a negative correlation with kernel color (-0.38*). Based on the result of stepwise regression analysis, nut weight, lateral bearing and nut size index were the main components of walnut yield. Correlation study between biochemical traits with altitude and morphological traits showed that oil and protein percentage of walnut kernel was not affected by the physical characteristics of the nut (nut and kernel size and weight). In Contrast, the oil and protein content increased with increasing altitude. A strong and negative correlation was observed between MUFA and PUFA. Also, PUFA: SFA ratio negatively correlated with shell thickness.

کلیدواژه‌ها [English]

  • Correlation coefficient
  • genetic diversity
  • nut size
  • oil percentage
  • stepwise regression
  • yield‎
  1. Abedi, B. & Parvaneh, T. (2016). Study of correlations between horticultural traits and variables affecting kernel percentage of walnut (Juglans regia L.). Journal of Nuts, 7 (1), 35-44.
  2. Akca, Y. & Ozongun, S. (2004). Selection of late leafing, late flowering, laterally fruitful walnut (Juglans regia) types in Turkey. New Zealand Journal of Crop and Horticultural Science, 32 (4), 337-342.
  3. Amiri, R., Vahdati, K., Mohsenipoor, S., Mozaffari, M. R. & Leslie, C. (2010). Correlations between some horticultural traits in walnut. HortScience, 45, 1690–1694.
  4. Anonymous. (2017). Agriculture Statistics of Iran. Deputy Planning and Economic, Ministry of Agriculture-Jahad, Iran, Retrieved 11 July 2018 from http://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj194-95-site.pdf (In Farsi).
  5. AOAC. (1995). Official Methods of Analysis (16th Ed). Association of Official Analytical Chemists. Arlington, VA.
  6. Arzani, K., Mansouri Ardakan, H., Vezvaei, A. & Roozban, M. R. (2008). Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran. New Zealand Journal of Crop and Horticultural Science, 36, 159–168.
  7. Bouabdallah, I., Bouali, I., Martinez-Force, E., Albouchi, A., Perez Camino, M.C. & Boukhchina, S. (2014). Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Natural Product Research, 28 (21), 1826–1833.
  8. Ebrahimi, A., Fattahi Moghadam, M. R., Zamani, Z. & Vahdati, K. (2010). An investigation on genetic diversity of 608 Persian walnut accessions for screening of some genotypes of superior traits. Iranian Journal of Horticultural Science, 40 (4), 83-94 (In Farsi).
  9. Eskandari, S., Hassani, D. & Abdi, A. (2005). Investigation on genetic diversity of Persian walnut and evaluation of promising genotypes. Acta Horticulturae, 705, 159-163.
  10. FAO. (2016). FAOSTAT production crops. FAOSTAT website from http://faostat.fao.org/site/567/default.aspx#ancor.
  11. Forde, H.I. (1975). Walnuts. In: Janick, J. and Moore, J.N. (Eds.), Advances in Fruit Breeding. (pp. 439-455). Purdue University Press, West Lafayette, IN.
  12. Gandev, S. (2007). Budding and grafting of the walnut (Juglans regia L.) and their effectiveness in Bulgaria (Review). Bulgarian Journal of Agricultural Science; 13, 683-689.
  13. Govindaraj, M., Vetriventhan, M. & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 1-14.
  14. Hansche, P. E., Beres, V. & Forde, H. I. (1972). Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement. Journal of the American Society for Horticultural Science, 97, 279-285.
  15. IPGRI. (1994). Descriptors for walnut (Juglans spp.). Rome, Italy, International Plant Genetic Resources Institute, 51 pp.
  16. Janick, J. & Paul, R.E. (2008). The encyclopedia of fruit and nuts. CABI Press, 800 pp.
  17. Karamatlo, I., Sharifani, M. & Sabouri, H. (2016). Evaluation of genetic diversity in some walnut (Juglans regia L.) genotypes using morphological markers. Journal of Crop Production and Processing, 6 (20), 13-23 (In Farsi).
  18. Korac, M., Cerovic, S., Golosin, B. & Miletic, R. (1997). Collecting, evaluation and utilization of walnut (Juglans regia L.) in Yugoslavia. Plant Genetic Ressources Newsletter, 111, 72-74.
  19. Labuckas, D. O., Maestri, D. M., Perello, M., Martınez, M. L. & Lamarque, A. L. (2008). Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chemistry, 107, 607-612.
  20. Martinez, M. L. & Maestri, D.M. (2008). Oil chemical variation in walnut (Juglans regia L.) genotypes grown in Argentina. European Journal of Lipid Science and Technology, 110 (12), 1183-1189.
  21. Martınez, M. L., Labuckas, D. O., Lamarque, A. L. & Maestri, D. M. (2010). Walnut (Juglans regia L.): genetic resources, chemistry, by-products. Journal of Science Food Agriculture, 90, 1959-1967.
  22. McGranahan, G. H. & Forde, H. I. (1985). Relationship between clone age and selection trait expression in mature walnuts. Journal of the American Society for Horticultural Science, 110, 692-696.
  23. Metcalf, L. C., Schmirz, A. A. & Pelka, J. R. (1966). Rapid preparation of methyl esters from lipid for gas chromatography. Analytical Chemistry, 38, 514-515.
  24. Mousavi, S. A., Tatari, M., Moradi, H. & Hassani, D. (2015). Evaluation of genetic diversity among the superior walnut genotypes based on pomological and phenological traits in Chahar Mahal va Bakhtiari province. Seed and Plant Improvement Journal, 31(2), 365-389. (in Farsi)
  25. Naghavi, M.R., Gharehyazi, B. & Hoseini salkadeh, G. (2008). Molecular markers. (2nd ed.). University of Tehran Press, 334 p. (in Farsi)
  26. Pathak, T. B., Maskey, M. L., Dahlberg, J. A., Kearns, F., Bali, K. M. & Zaccaria, D. (2018). Climate change trends and impacts on California agriculture: a detailed review. Agronomy, 8(3), 1-27.
  27. Pereira, J. A., Oliveira, I., Sousa, A., Ferreira, I. C. F. R., Bento, A. & Estevinho, L. (2008). Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food and Chemical Toxicology, 46, 2103-2111.
  28. Ramos, D. E. (1997). Walnut production manual (Vol. 3373). UCANR Publications. 320pp.
  29. Rehman, M. U., Rather, G. H., Gull, Y., Mir, M. R., Mir, M. M., Waida, U. I. & Hakeem, K. R. (2015). Effect of climate change on horticultural crops. In: K. R. Hakeem (Ed), Crop Production and Global Environmental Issues. (pp. 211-239) Springer Press.
  30. Reiter, R. J., Manchester, L. C. & Dun-xian Tan, M. D. (2005). Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition, 21, 920-924.
  31. Ribeiro, H. L. C., Santos, C. A. F., Diniz, L. D. S., Nascimento, L. A. D. & Nunes, E. D. (2016). Phenotypic correlations and path analysis for plant architecture traits and grain production in three generations of cowpea. Revista Ceres, 63(1), 33-38.
  32. Sarikhani Khorami, S., Arzani, K. & Roozban, M. R. (2012). Identification and selection of twelve walnut superior and promising genotypes in Fars Province, Iran. Seed and Plant Improvement Journal, 28 (2), 277-296. (in Farsi)
  33. Sarikhani Khorami, S., Arzani, K. & Roozban, M. R. (2014). Correlations of certain high-heritability horticultural traits in Persian walnut (Juglans regia L.). Acta Horticulturae, 1050, 61-68.
  34. Sarikhani Khorami, S., Arzani, K., Karimzadeh, G. & Shojaeiyan, A. (2018a). Morphological characteristics, protein contents and fatty acids composition of some walnut (Juglans regia L.) superior genotypes in the north of Fars province. Seed and Plant Production Journal, 33 (2), 163-184. (in Farsi)
  35. Sarikhani Khorami, S., Arzani, K., Karimzadeh, G., Shojaeiyan, A. & Ligterink, W. (2018b). Genome size: a novel predictor of nut weight and nut size of walnut trees. HortScience, 53(3), 275-282.
  36. Shafaei Chorush, Z. & Arzani, K. (2018). Evaluation of diversity of walnut promising genotypes in Kermanshah province according to oil properties and determine the correlation of these traits with some morphological and ecological characters. Iranian Journal of Horticultural Science, 48(4), 887-897. (in Farsi)
  37. Shamlo, F., Rezaei, M., Biabani, A. & Khanahmadi, A. (2016). Morphological diversity among walnut genotypes of in Azadshar, Iran. Journal of Horticulture Science, 30 (3), 469-479.
  38. Sharma, O. C. & Sharma, S. D. (2001). Correlation between nut and kernel characters of Persian walnut seedlings trees of Garsa Valley in Kullu district of Himachal Pradesh. Acta Horticulturae, 544, 129-132.
  39. Solar, A., Ivancic, A., Stampar, F. & Hudina, M. (2002). Genetic resources for walnut (Juglans regia L) improvement in Slovenia. Evaluation of the largest collection of local genotypes. Genetic Resources and Crop Evolution, 49, 491-501.
  40. Soleimani, A., Rabiei, V., Hassani, D. & Amiri, M. E. (2009). Effects of rootstock and cultivar on propagation of walnut (Juglans regia L.) using hypocotyl grafting.  Seed and Plant Production Journal, 25 (1), 93-101. (in Farsi)
  41. Vahdati, K., Hassani, D., Rezaee, R., Jafari Sayadi, M. H. & Sarikhani Khorami, S. (2014). Walnut footprint in Iran. In:  Avanzato, D., McGranahan, G. H., Vahdati, K., Botu, M., Iannamico, L., & Assche, J. V. (Ed), Following walnut footprints (Juglans regia L.) cultivation and culture, folklore and history, traditions and uses. (pp. 187-201). Scripta Horticulturae.
  42. van Nocker, S. & Gardiner, S. E. (2014). Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1, 14022.
  43. Yarilgac, T., Koyuncu, F., Koyuncu, M. A., Kazankaya, A. & Sen, S. M. (2001). Some promising walnut selections (Juglans regia L.). Acta Horticulturae, 544, 93-100.
  44. Yucel, C., Baloch, F. S. & Ozkan, H. (2009). Genetic analysis of some physical properties of bread wheat grain (Triticum aestivum L. em Thell). Turkish Journal of Agriculture and Forestry, 33, 525-535.
  45. Yuemei, C., Junmin, D. & Caihong, Z. (2013). The analysis on fat characteristics of walnut varieties in different production areas of Shanxi province. Journal of Plant Studies, 3(1), 28-34.
  46. Zeneli, G., Kola, H. & Dida, M. (2005). Phenotypic variation in native walnut populations of Northern Albania. Scientia Horticulturae, 105, 91-100.