تأثیر کاربرد کودهای زیستی بر عملکرد، کیفیت و ظرفیت آنتی اکسیدانی میوه گوجه فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری، دانشکده کشاورزی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران

3 دانشیار، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران

چکیده

به­منظور بررسی تأثیر کودهای زیستی بر عملکرد، کیفیت و ظرفیت آنتی­اکسیدانی میوه گوجه­فرنگی، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با 9 تیمار و 3 تکرار در ایستگاه تحقیقاتی خلعت­پوشان دانشکده کشاورزی دانشگاه تبریز به اجرا درآمد. بذرهای گوجه­فرنگی رقم Super Chief در کشت خزانه با تیمار منفرد و تلفیقی باکتری­های آزادکننده پتاسیم (Pseudomonas sp. S19-1, Pseudomonas sp. S14-3) و حل‌کننده فسفات (P. putida Tabriz, P. fluorescence Tabriz) و تثبیت‌کننده نیتروژن (Azospirillum sp. Acu9, Azotobacter sp.) تلقیح شدند. علاوه بر این تیمارها، تیمار شاهد بدون تلقیح باکتری و کوددهی (شاهد یک) و تیمار شاهد بدون تلقیح باکتری و با کوددهی (عناصر ماکرو) براساس نتایج آزمون خاک (شاهد دو) به­منظور انجام مقایسه لحاظ شدند. صفات مورد ارزیابی شامل عملکرد کل، عملکرد اقتصادی و غیراقتصادی، تعداد میوه، وزن متوسط میوه، درصد ماده­خشک میوه، میزان ویتامین ث، میزان لیکوپن، اسیدیته قابل تیتراسیون میوه و مقدار پتاسیم میوه بودند. نتایج نشان داد که اثر باکتری‌های فوق بر شاخص‌هایی مثل عملکرد، میزان پتاسیم میوه، اسیدیته، درصد ماده خشک میوه، محتوای ویتامین ث و لیکوپن معنی‌دار بود و بالاترین میزان عملکرد، میزان پتاسیم میوه، اسیدیته و درصد ماده خشک میوه در تیمار باکتری­های آزادکننده پتاسیم و بالاترین میزان ویتامین ث در تیمار تلفیقی باکتری­های آزادکننده پتاسیم و حل‌کننده فسفات و بالاترین میزان لیکوپن در تیمار تلفیقی باکتری­های آزادکننده پتاسیم و حل‌کننده فسفات و تثبیت‌کننده نیتروژن به­دست آمد. با­توجه به نتایج فوق می‌توان به مؤثر­بودن باکتری­های آزادکننده پتاسیم و حل‌کننده فسفات و تثبیت‌کننده نیتروژن به­عنوان کود زیستی در بهبود عملکرد و خصوصیات کیفی گوجه­فرنگی اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of application of biofertilizers on yield, quality and antioxidant capacity of tomato fruit

نویسندگان [English]

  • Peyman Sheikhalipour 1
  • Saheb Ali Bolandndnazar 2
  • Mohammad Reza Sarikhani 3
  • Jaber Panahandeh 3
1 Ph. D. Candidate, Department of Horticultural Science, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
2 Professor, Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

In order to study the effect of biofertilizers, on the yield, quality and antioxidant capacity of tomato fruit, an experiment based on randomized complete block design with 9 treatments and 3 replications was carried out at Khalatpoushan station, Faculty of Agriculture, Tabriz University. seeds of Super Chief tomato variety were inoculated with individual and combined treatments of potassium releasing bacteria (Pseudomonas sp. S19-1, Pseudomonas sp. S14-3), phosphate solubilizing (P. putida Tabriz, P. fluorescens Tabriz) and nitrogen fixing (Azospirillum sp. Acu9, Azotobacter sp.) In the nursery cultivation. In addition, control treatments were performed, without bacterial inoculation and fertilization (control 1) and control treatment without bacterial inoculation and with fertilization (macro elements) based on the soil test analysis (control 2) compare the results. Traits assessed include: total yield, economic yield, non-economic yield, the number of total fruit, average weight of fruit, fruit dry matter, lycopne, vitamin C, total acid and fruit potassium. Results showed that inoculation with bacteria had significant effect on yield, potassium content of fruit, acidity of fruit, dry matter, vitamin C and lycopene content and the highest yield, potassium content of fruit, acidity and fruit dry matter were observed in potassium releasing bacteria treatment. The highest amount of vitamin C was observed in the potassium releasing and phosphate solubilizing bacteria combined treatment while the highest amount of lycopene was obtained in the potassium releasing and phosphate solubilizing and nitrogen fixing bacteria combined treatment. According to the above results, potassium releasing and phosphate solubilizing and nitrogen fixing bacteria as a biofertilizer could be employed to improve yield and quality characteristics of tomato.

کلیدواژه‌ها [English]

  • Azospirillum
  • Azotobater
  • nutrients
  • Pseudomonas
  1. Al-Karaki, G. N. )2000(. Growth, sodium, and potassium uptake and translocation in salt stressed tomato. Journal of Plant Nutrition, 23(3), 369-379.
  2. Almeslemani, M., Pant, R. & Singh, B. (2009(. Potassium level and physiologyical response and fruit quality in hydroponically grown tomato. International Journal of Vegetable Science, 16, 86-95.
  3. Amjad, M., Akhtar, J., Anwar-ul-haq, M., Iimran, S. & Jacobsen, S. (2014). Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turkish Journal of Biology, 38, 208-218
  4. Ananthi, S., Veeraragavathatham, D. & Srinivasan, K. (2004). Influence of sources and levels of potassium on quality attributes of chilli (Capsicum annuum L.). South Indian Horticulture, 52 (1-6), 152-157.
  5. A.O.A.C. (1980). Official Methods of Analysis Association of Official Analytical Chemist. Washington D.C. USA.
  6. Aslantaş, R., Çakmakçi, R. & Sahin. F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae, 111, 371-377.
  7. Badr, M. A. (2006). Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. Journal of Applied Sciences Research, 2, 1191-1198.
  8. Bagal, S. D., Shaikh, G. A. & Adsule, R. N. (1989). Influence of different levels of N. P and K fertilizers on the protein, sscorbic acid, sugers and mineral contents. Journal of Maharashtra. Journal of Maharashtra agricultural universities, 14(2), 153-155. 
  9. Bano, A. (2008(. Altitudinal variation in Azospirillum species collected from the rhizosphere and roots of (Zea mays L.). Asian Journal of Plant Sciences, 5, 1051-1053.
  10. Bar, J., White, V., Chen, L., Bae, H. & Rodemel, S. R. (2003). The GHOST terminal axidase is required for carotrnoied biosynthesis, plastid biogenesis, and tissue morphogenesis during tomato fruit ripening. Plant, Cell & Environment, 27, 1-13.
  11. Bhardwaj, D., Ansari, M. W., Sahoo, R. K. & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66.
  12. Bryson, G. M. & Barker, A. V. (2002). Determination of optimal fertilizer concentration range for tomatoes. Communications in Soil Science and Plant Analysis, 33, 759-777.
  13. Chakraborty, U., Chakraborty, B. & Basnet, M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology (JBM) cyclic nucleotids. Journal of Plant Physiology, 127, 1617-1625.
  14. Chapagain, B. P. & Wiesman, Z. (2004). Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Scientia Horticulturae, 99, 279-288.
  15. Davies, J. N. & Winsor, G. W. (1967). Efecct of nitrogen, phosphorus, potassium, magnesium and liming on the composition of tomato fruit. Journal of the Science of Food and Agriculture, 18, 459-466.
  16. De Pascale, S., Tamburrino, R., Maggio, A., Barbieri, G., Fogliano, V.  & Pernice, R. (2008). Effects of nitrogen fertilization on the nutritional value of organically and conventionally grown tomatoes. Acta Horticulturae, 700, 107-110.
  17. Dinesh, K. M. (2011).Maheshwari, Dinesh K. (Ed.). Bacteria in Agrobiology: Crop Ecosystems. (pp: 189-236).Springer Science.
  18. Dorais, M., Papadopulos, A. P. & Gosselin, A. (2001). Influence of electrical conductivity management on greenhouse tomato yield and fruit quality. Agronomie, 21, 367-383.
  19. Economakis, C. & Daskalaki, A. (2003). Effect of potassium nutrition on yield and quality of tomato plants grown with nutrient film technique under sodium chloride saline conditions. Acta Horticulturae, 609, 337-339.
  20. Egamberberdiyeva, D. & Hoflich, G. (2003). Influence of growth- promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biology and Biochemistry, 35, 973-978.
  21. Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E. & Saccard, F. (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of Agricultural and Food Chemistry, 54, 4319-4325.
  22. Fawzy, Z. F., Behairy, A. G. & Shehata, S. A. (2005). Effect of potassium fertilizer on growth and yield of sweet pepper plants (Capsicum annuum L.). Egyptian Journal of Agricultural Research, 2(2), 599-610.
  23. Fawzy, Z. F., El-Nemr, M. A. & Saleh, S. A. (2007). Influence of levels and methods of potassium fertilizer application on growth and yield of eggplant. Journal of applied sciences Research, 3(1), 42-49.
  24. Fish, W. W., Perkins-Veazie, P. & Collins, J. K. J. (2002). Tomato lycopene measuring by butylate hydroxyl toluene. Journal of Food Composition and Analysis, 15, 309-317.
  25. Flores, F. B., Sanchez-Bel, P., Estan, M. T., Martinez-Rodriguez, M. M., Moyano, E., Morales, B., Compos, J. F., Garcia-Abellan, J. O., Egea, I., Fernandez-Garcia, N., Romojaro, F. & Bolarin, M. C. C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125, 211-217.
  26. George, B., Kaur, C., Khurdiya, D. S. & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype. Food Chemistry, 84, 45-51.
  27. Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica.
  28. Gruda, N. (2005). Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critical Review in Plant Science, 24, 227-274.
  29. Gupta, C. R. & Sengar, S. S. (2000). Response of tomato (Lycopersicon esculentum Mill.) to nitrogen and potassium fertilization in acidic soil of Bastar. Journal of Vegetation Science, 27(1), 94-95.
  30. Haby, V. A., Russelle, M. D. & Skogley, E. O. (1990). In: S. H. Mickelson (ed).  Testing soils for potassium, calcium and magnesium. (p. 181-227). Madison. WI., USA.
  31. Hameedaa, B., Harinib, G. O., Rupelab, P., Wanib, S. P. & Reddya, G. (2008). Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna, Microbiological Research, 163, 234-242.
  32. Han, H. S., Supanjani, K. & Lee, D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52, 130-136.
  33. Hartz, T. K., Miyao, E. M., Mullen, R. J. & Cahn, M. D. (2000). Potassium fertilization effects on processing tomato yield and fruit quality. Acta Horticulturae, 542(3), 127-133.
  34. Heinrichs, D. E., Rahn, A., Dale, S. E. & Sebulsky, M. T. (2004). Iron transport systems in pathogenic bacteria: Staphylococcus, Streptococcus, and Bacillus. Pp. 387-401. In: crosa JH, Mey AR and payne SM, (eds.) Iron Transport in Bacteria. American Society of Agronomy, Wisconsin, DC. Hort., 731, 115-120.
  35. Imas, P. & Bansal, S. K. (1999). Potassium and integrated nutrient management in potato. In: Presented at the global conference on potato, 6-11 December, New Delhi, India.
  36. Kanai, S., Ohkura, K., Adu-Gyamfi, J. J., Mohapatra, P. K., Nguyen, N. T., Saneoka, H. & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 58, 2917-2928.
  37. Khayyat, M., Tafazoli, E., Eshghi, S., Rahemi, M. & Rajaee, S. (2007). Salinity supplementary calcium and potassium effect on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Journal of Agriculture and Environmental Sciences, 2(5), 539-544.
  38. Kloepper, J. W., Reddy, M. S., Rodríguez-Kabana, R., Kenney, D. S., Kokalis-Burelle, N., Martinez-Ochoa, N. & Vavrina, C. S. (2004). Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 631, 217-229.
  39. Kobryń, J. & Hallmann, E. (2004). The effect of nitrogen fertilization on the three tomato types cultivated on rockwool. Acta Horticulturae, 691, 341-348.
  40. Lester, G. E., Jifon, J. L. & Makus, D. J. (2006). Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. Horticultural Science, 41(3), 741-744 
  41. Mena-Violante, H. G., Ocampo-Jimenez, O., Dendooven, L., Martinez-Soto, G., Gonzalez-Castafieda, J., Davies, Jr. & Olalde-Portugal, V. (2006). Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza, 16, 261-267.
  42. Nehra, V. & Choudhary, M. (2015). A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. Journal of Applied and Natural Science, 7(1), 540-556.
  43. Ordookhani, K., Khavazi, K., Moezzi, A. & Rejali, F. (2010). Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African Journal of Agricultural Research, 5 (10), 1108-16.
  44. Oskooei, A. R., Ali-Asgharzadeh, P. & Baghban, S. (2005). Influence of mycorrhizal fungi on yield and concentration of vitamin C of tomato in different levels of phosphorous. Journal of Agricultural and Natural Resources Sciences, 82, 849-857. (in Farsi)
  45. Perkins-veazie, P. & Roberts, W. (2002). Can potassium application affect the mineral and antioxidant content of horticultural crops?. In: Proceedings of the Symposium on Fertilizing Crops for Functional Food. p.2/1-2/6.
  46. Puente, M. & Bashan, Y. (2004). Microbial population and activity in the rhizoplan of rock-weathering desert plants, Growth promotion of cactus sedling. Plant Biology, 6, 643-650.
  47. Rongchang, L. & Feniting, L. (1995). International training course on biological fertilizer. Bodenk, boading cgina. Pp: 11- 68.
  48. Rubio, J. S., Garcia-Sanchez, F., Flores, P., Navarro, J. M. & Martinez, V. (2010). Yield and fruit quality of sweet pepper in response to fertilization with Ca2+ and K+. Spanish Journal of Agricultural Research, 8(1), 170-177.
  49. Sahin, F., Kotan, R., Demirci, E. & Miller, S. A. (2000). Domates ve biber bakteriyel leke hastaligi ile biyolojik savasta actigard ve bazi antagonistlerin etkinligi. Ataturk Universitesi Ziraat Fakultesi Dergisi, 31, 11-16.
  50. Sheng, X. F., Zhao, F., He, L. Y., Qiu, G. & Chen, L. (2008). Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfacees of weathered feldspar. Canadian Journal of Microbiology, 54, 1064-1068.
  51. Sugumaran, P. & Janarthanam, B. (2007). Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Science, 3, 350-355.
  52. Szczerba, M. W., Britto, D. T. & Kronzucker, H. J. (2008). K+ transport in plants: Physiology and Molecular Biology of Plants, 166, 447-466.
  53. Tabatabaei, S. J. (2009). Principles of Mineral Nutrition of Plants. Kharazmi Press. (in Farsi)
  54. Taber, H. G. (2006). Potassium application and leaf sufficiency level for fresh-market tomatoes on a Midwestern United States fine-textured soil. HortTechnology, 16, 247-252.
  55. Toor, R. K. & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38, 487-494.
  56. Trudel, M. J. & Ozbun, J. L. (1971). Influence of potassium on carotenoid content fruit. Journal of the American Society for Horticultural Science, 96, 763-765.
  57. Vessy, K. (2003). Plant growth promoting rhizobacteria as biofertilizars. Plant and Soil, 255, 571-586.
  58. Willumsen, J., Petersen, K. & Kaack, K. (1996). Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone. HortScience, 71(1), 81-98.
  59. Wuzhong, N. (2002). Yield and Quality of Fruits of Solanaceous Crops as Affected by Potassium Fertilization. Better Crops International, 16(1), 6-8.
  60. Yurtseven, E., Kesmez, G. D. & Unlukara, A. (2005). The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agricultural Water Management, 78, 128-135.
  61. Zhao, D., Oosterhuis, D. M. & Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultra-structure of cotton plants. International Journal for Photosynthesis Research, 39, 103-109.