بررسی کاربرد اسید جاسمونیک و اسید آبسایزیک بر متابولیسم گیاه توت فرنگی در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده کشاورزی، دانشگاه جهرم، فارس، ایران

چکیده

این پژوهش با هدف ارزیابی اثر اسید جاسمونیک و اسید آبسایزیک در رژیم­های مختلف تنش شوری با نمک کلرید­سدیم (NaCl)، روی تغییرات متابولیکی برگ گیاه توت­فرنگی از دو رقم ʼکردستانʻ و ʼکوئین­الیزاʻ در قالب طرح کاملا تصادفی به انجام رسید. کاهش اثرات نامطلوب تنش ناگهانی نمک کلرید­سدیم و تنش شوری تدریجی با NaCl با افزایش مقدار فنول کل و ظرفیت آنتی­اکسیدانی کل مشاهده شد. اسید آبسایزیک و اسید جاسمونیک باعث افزایش معنی­دار مقدار کل پروتئین محلول در برگ­های رقم ʼکردستانʻ در شرایط بدون تنش و تنش تدریجی NaCl شدند. نقش اسید جاسمونیک و اسید آبسایزیک در افزایش اسید آسپارتیک در تنش تدریجی NaCl قابل­مشاهده بود. تنش ناگهانی NaCl افزایش معنی­دار تیروزین را القا کرد و کاربرد هر دو هورمون سبب افزایش مقدار اسیدهای آمینه آسپاراژین، آلانین، هیستیدین و GABA شدند. نتایج این مطالعه نشان داد که اسید جاسمونیک و اسید آبسایزیک، هورمون­های مهم تنش هستند و کاربرد اسید آبسایزیک و غلظت­های مختلف اسید جاسمونیک، باعث فعال­سازی مکانیزم دفاعی گیاه توت­فرنگی در برابر تنش شوری می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Jasmonic acid and abscisic acid on metabolism of strawberry under NaCl stress

نویسنده [English]

  • Salma Jamalian
Assistant Professor, College of Agriculture, Jahrom University, Fars, Iran
چکیده [English]

The aim of this research was to evaluate the effect of application of exogenous jasmonic acid (JA) and abscisic acid (ABA) at different salinity regimes, on primary and secondary metabolic changes of 'Kurdistan' and 'Queen Elisa' strawberry leaves. The reduction of adverse effects of sudden salt stress and gradual salt stress regime by increasing total phenolic content and total antioxidant capacity, has been confirmed in 'Kurdistan' and 'Queen Elisa' after application of JA and ABA. The presence of the two hormones under non-saline conditions significantly increased total soluble protein content but less than 10 mM L-1 of sudden salt stress adverse effects were noticed. Abscisic acid and JA caused a clear increase in total soluble proteins of 'Kurdistan' leaves at both gradual salt stress and non-saline conditions. The role of JA and ABA in aspartic acid increment at gradual salt regime was notable. Salt stress induced tyrosine increase and both hormones enhanced asparagine, alanine, histidine, and GABA contents, respectively. The study reveals that JA and ABA are important plant stress hormones and application of ABA accompanied by different JA concentrations activated the protective mechanism of the strawberry plant against NaCl stress.

کلیدواژه‌ها [English]

  • Abscisic acid
  • Jasmonic acid
  • primary metabolites
  • salinity
  • secondary metabolites
  • strawberry
  1. Akcay, N., Bor, M., Kerabudak, T., Ozdem, F. & Turkan, I. (2012). Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotinia sylvestris CMII mutant and wild type plants. Journal of Plant Physiology, 169(5), 452-458.
  2. Al.Asbahi, A., Al.Maqtari, M. A. & Naji, K. M. (2012). ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plant tissues. Journal of Stress Physiology and Biochemistry, 8(2), 179-192.
  3. Ashraf, M. & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16.
  4. Bouche, N. & Fromm, H. (2004). GABA in plants: just a metabolite? Trends in Plant Science, 9, 110-115.
  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, 72, 248-254.
  6. Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P. & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255.
  7. Daiponmak, W. P., Theerakulpisut, P., Thanonkao, P., Vanavichit, A. & Prathepa, P. (2010). Changes of anthocyanin cyanidine-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Science Asia, 286-291.
  8. D'Anna, F. D., Incalcaterra, G., Moncad, A. & Miceli, A. (2003). Effects of different electrical conductivity levels on strawberry grown in soilless culture. Acta Horticulture, 609, 355-360.
  9. Debouba, M., Suzuki, A., Boutet, S., Ghorbel, M. H. & Gouia, H. (2010). Amino acid changes in leaves and roots of tomato (Solanum lycopersicon) during salt stress. Acta Botanica Gallica, 157(2), 255-264.
  10. Gulen, H. E., Turhan, E. & Eris, A. (2006). Changes in peroxidase activities and soluble proteins in strawberry varieties under salt stress. Acta Physiologia Plantarum, 28(2), 109-116.
  11. Hajlaoui, H., El Ayeb, N., Garrec, J. P.  & Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Indian Crop Production, 31, 122-130.
  12. Hassanuzzaman, M., Nahar, K. & Fujita, M. (2013). Plant responses to salt stress and role of exogenous protectants to mitigate salt stress damages. In: Ahmad P et al., (eds) Ecophysiology and responses of plants under salt stress. Springer. Science, pp 25-87.
  13. Herrera-Rodriguez, M. B., Perez-Vicente, R. & Maldonado, A. (2007). Expression of asparagines synthetase genes in sunflower (Helianthus annus) under various environmental stresses. Plant Physiology and Biochemistry, 45(1), 33-38.
  14. Ivanov, A. A. (2010). Effect of light conditions of wheat growing on sensitivity of photosynthetic machinery to salt stress. Russian Journal of Plant Physiology, 57(6), 770-777.
  15. Jaleel, C. A., Manivannan, P., Lakshmanan, G. M. A., Sridharan, R. & Panneerselvam, R. (2007). NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthusamarus. CR: Biology, 330, 806-813.
  16. Jamalian, S., Gholami, M. & Esnaashari, M. (2013). Salinity-induced jasmonic acid, abscisic acid, mineral elements and some physiological changes in two strawberry (Fragaria × ananassa Duch.) cultivars. Agrochimica, 57(3), 201-217.
  17. Jouyban, Z. (2012). The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2(1), 7-10.
  18. Kang, D. J., Seo, Y. J., Lee, L. D., Ishii, R., Kim, K. U., Shin, D. H., Park, S. K., Jang, S. W. & Lee, I. J. (2005). Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 191, 273-282.
  19. Kaya, C., Kirnak, Higgs, H. & Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulture, 93, 65-72.
  20. Kempa, S., Krasensky, J., Dal Santo, S., Kopka, J. & Jonak, C. (2008). A central role of abscisic acid in stress regulated carbohydrate metabolism. Plos One, 3, e3935.
  21. Keutgen, A. & Pawelzik, E. (2007a). Modification of taste relevant compounds in strawberry fruit under NaCl salinity. Food Chemistry, 105, 1487-1494.
  22. Keutgen, A. J. & Pawelzik, E. (2007b). Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress. Journal of Agriculture and Food Chemistry, 55(10), 4066-4072.
  23. Keutgen, A. & Pawelzik, E. (2008a). Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111, 642-647
  24. Keutgen, A. & Pawelzik, E. (2008b). Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107, 1413-1420.
  25. Keutgen, A. & Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two strawberry cultivars of strawberry. Environmental and Experimental Botany, 65, 170-176.
  26. Khan, T. A., Mazid, M. & Mohammad, F. (2011). Status of secondary plant products under abiotic stress: an overview. Journal of Stress Physiology and Biochemistry, 7(2), 75-98.
  27. Kovacs, Z., Simon-Sarkadi, L., Vashegyi, I. & Gabor, K. (2012). Different accumulation of free amino acids during short-and long term osmotic stress in wheat. Scientific World Journal. Doi:10.1100.2012.216521.
  28. Krasensky, J. & Jonak, C. (2012). Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, doi: 10.1093/jxb/err460
  29. Lakhdar, A., Hafsi, C., Rahbi, M., Debez, A., Montemurro, F., Abdell, C., Jeddi, N. & Oureghi, Z. (2008). Application of municipal solid waste compost reduces the negative effects of saline water in (Hordeumm aritimum L.). Bioresource and Technology, 99, 7160-7167.
  30. Maksimovic, J. J. D. & Zivanovic, B. D. (2012). Quantification of the antioxidant activity in salt-stressed tissues. In: Shabala S, Cuin T A (eds.) Plant Salt Tolerance: Methods and Protocols. Methods in Molecular Biology. Springer Science. Vol. 913 pp 237-250.
  31. Martino, C. D., Delfine, S., Pizzuto, R., Loreto, F. & Fuggi, A. (2003). Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytology, 158, 455-463.
  32. Muhajan, S. & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives in Biochemistry and Biophysics, 444, 139-158.
  33. Muthukumararasamy, M., Gupta, S. D. & Pannerselvam, R. (2000). Enhancement of peroxidase, polyphenoloxidase and superoxide dismutase activities by tridimefon in NaCl stressed Raphanus sativus L. Biologia Plantarum, 43, 317-320.
  34. Neocleou, D., Ziogas, V. & Vasilakakis, M. (2012). Antioxidant response of strawberry plants under stress conditions. Acta Horticulturae, 10.17660/Acta Hortic.2012.926.47
  35. Ollas, C. Arbona, V. & Gomez-Cadenas, A. (2015). Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. Plant Signaling and Behaviour, 10(12), e1078953. doi: 10.1080/15592324.2015.1078953.
  36. Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environment Safety, 60, 324-349.
  37. Parvaiz, A. & Satyawati, S. (2008). Salt stress and phyto-biochemical responsesof plants: a review. Plant Soil and Environment, 54(3), 89-99.
  38. Radi, A. A., Faraghly, F. A. & Hamada, A. M. (2013). Physiological and biochemical responses of salt tolerant and salt sensitive wheat and bean cultivars to salinity. Journal of Biology and Earth Science, 3(1), 72-88.
  39. Setayesh Mehr, Z., Khajeh, H., Esmaeilzadeh Behdadi, S. & Sabbagh, S. K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. International Journal of Agriculture and Plant Production, 3, 710-715.
  40. Shahzad, A. N. (2011). The role of jasmonic acid (JA) and abscisic acid (ABA) in salt resistance of maize (Zea mays L.). Doctoral thesis. Justus Liebig University Giessen.VVB LAUFERSWEILER VERLAG. Printed in Germany. ISBN: 978-3-8359-5829-6. 96 pp.
  41. Singleton, V. L. & Rossi, J. A. (1965). Colorimetery of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  42. Tuteja, N. (2007). Abscisic acid and abitic stress signaling. Plant Signal Behaviour, 2(3), 135-138.
  43. Wang, H. D., Liu, J. S. & Zhang, A. (2005). Asparagine synthetase gene TaASN1 from wheat is upregulated by salt stress, osmotic stress and ABA. Journal of Plant Physiology, 162(1), 81-89.
  44. Wang, W., Vinocur, B. & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta, 218(1), 1-14
  45. Wasternack, C. & Hause, B. (2003). Jasmonates and octadecanoids: signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, 72, 165-221.
  46. Yan, H., Hu, X. & Li, F. (2012). Leaf photosynthesis, chlorophyll flioroscence, ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress. Acta Physiologia Plantarum, 34(6), 2285-2295.
  47. Yoon, J. Y., Homayun, M., Lee, S. & Lee, I. (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12(2), 63-68.