Abuarab, M., Mostafa, E. & Ibrahim, M. (2013). Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil. Journal of Advanced Research, 4(6), 493-499.
Allaire, S. E., Caron, J., Duchesne, I., Parent, L. É. & Rioux, J. A. (1996). Air-filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus × Cistena sp. growth in peat substrates. Journal of the American Society for Horticultural Science, 121(2), 236-242.
Awang, Y., Shaharom, A. S., Mohamad, R. B. & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American journal of agricultural and biological sciences, 4(1), 63-71.
Barker, A. V. & Pilbeam, D. J. (Eds.). (2015). Handbook of plant nutrition. Chemical Rubber Company press.
Benito, M., Masaguer, A., De Antonio, R. & Moliner, A. (2005). Use of pruning waste compost as a component in soilless growing media. Bioresource technology, 96(5), 597-603.
Bilderback, T. E., Fonteno, W. C. & Johnson, D. R. (1982). Physical properties of media composed of peanut hulls, pine bark, and peatmoss and their effects on azalea growth. Journal American Society for Horticultural Science, 107(3), 522-525.
Bowman, D. C., Evans, R. Y. & Paul, J. L. (1990). Fertilizer salts reduce hydration of polyacrylamide gels and affect physical properties of gel-amended container media. Journal of the American Society for Horticultural Science, 115(3), 382-386.
De Boodt, M., Verdonck, O., (1972). The physical properties of substrates in horticulture. Acta Horticult, 26, 37-44.
DIN, EN. (2012). 13041. Soil Improvers and growing media–Determination of physical properties–Dry bulk density, air volume, water volume, shrinkage value and total pore space. German Version prEN, Beuth, Berlin/Cologne.
Fei, C., Zhaohui, S., Yuguo, Z. & Shijun, L. (2001). Analysis of physical and chemical properties of reed residue substrate. Journal-Nanging Agricualtural University, 24(3), 19-22.
Gruda, N. (2005). Growth and quality of vegetables in peat substitute growing media. Ph.D. Diss., Humboldt University, Berlin, Germany.
Haddad, M. (2007). Effect of three substrates on growth, yield and quality of tomato by the use of geothermal water in the south of Tunisia. Journal of Food Agriculture and Environment, 5(2), 175.
Handreck, K. A. & Black, N. D. (2002). Growing media for ornamental plants and turf. UNSW press.
Kang, J. Y., Lee, H. H. & Kim, K. H. (2001, September). Physical and chemical properties of inorganic horticultural substrates used in Korea. In International Symposium on Growing Media and Hydroponics 644 (pp. 237-241).
Mazari, H., Delshad, M. & Kasha, A. (2016). Study of the effect of substrates with different effective air-filled pore space on greenhouse tomato transplant growth. Iranian Journal of Horticultural Science, 47(3), 407-419. (in Farsi)
Merhaut, D. J. (2007). Handbook of plant nutrition. Elsevier press.
Michiels, P., Hartmann, R. & Coussens, C. (1992, September). Physical properties of peat substrates in an ebb/flood irrigation system. In International Symposium on Horticultural Substrates other than Soil in situ 342 (pp. 205-220).
Milks, R. R., Fonteno, W. C. & Larson, R. A. (1989). Hydrology of horticultural substrates. II. Predicting physical properties of media in containers. Journal of the American Society for Horticultural Science (USA).
Pill, W. G. & Goldberger, B. C. (2009). Growth of Tomato in Biosolids–Woodchip Co‐compost with Varying Proportions of Peat Moss and Perlite Subjected to Two Fertilization Regimes. Communications in Soil Science and Plant Analysis, 40(15-16), 2440-2459.
Prasad, M. (1979). Physical properties of media for container-grown crops. I. New Zealand peats and wood wastes. Scientia Horticulturae, 10(4), 317-323.
Prasad, M. & Chualáin, D. N. (2004). Relationship between particle size and air space of growing media. Acta Horticulturae, 161-166.
Raviv, M. & Blom, T. J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88(4), 257-276.
Raviv, M., Lieth, J. H. & Wallach, R. (2000, May). The effect of root-zone physical properties of coir and UC mix on performance of cut rose (cv. Kardinal). In World Congress on Soilless Culture: Agriculture in the Coming Millennium 554 (pp. 231-238).
Raviv, M., Wallach, R., Silber, A. & Bar-Tal, A. (2002). Substrates and their analysis. Hydroponic production of vegetables and ornamentals.
Roosta, H. R. & Afsharipoor, S. (2012). Effects of different cultivation media on vegetative growth, ecophysiological traits and nutrients concentration in strawberry under hydroponic and aquaponic cultivation systems. Advances in Environmental Biology, 6(2), 543-555.
Shinohara, Y., Hata, T., Maruo, T., Hohjo, M. & Ito, T. (1997, May). Chemical and physical properties of the coconut-fiber substrate and the growth and productivity of tomato (Lycopercicon esculentum Mill.) plants. In International Symposium on Growing Media and Hydroponics 481 (pp. 145-150).
Silber, A. & Bar-Tal, A. (2008). Nutrition of substrate-grown plants. Soilless Culture Theory and Practice. M. Raviv and H. Lieth (eds.) Ed. Elsevier. Amsterdam, The Netherlands. pp, 291-339.
Stanhill, G. (1986). Water use efficiency. Advances in Agronomy, 39, 53-85.
Verdonck, O. & Demeyer, P. (2001, September). The influence of the particle sizes on the physical properties of growing media. In: International Symposium on Growing Media and Hydroponics 644 (pp. 99-101).
Wallach, R. (2008). Physical characteristics of soilless media. Soilless culture: theory and practice, 1st edn. Elsevier, Amsterdam, 41-116.
Wilson, G. C. S. (1985, June). Tomato production in different growing media. In: Symposium on Nutrition, Growing Techniques and Plant Substrates 178 (pp. 115-120).