ارزیابی روابط عملکرد، صفات مرتبط با عملکرد و کیفیت میوه با استفاده از ضرایب همبستگی و تجزیه خوشه‌ای در برخی رگه‌های گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)

2 استادیار، گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)

3 استادیار گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)

چکیده

گوجه‌فرنگی (Lycopersicon esculentum Mill.) گیاهی از تیره سیب‌زمینی‌سانان (Solanaceae) و دومین سبزی پرمصرف جهان است که ارزیابی عملکرد میوه و صفات مؤثر بر آن در گزینش رقم‌های مطلوب حائز اهمیت می‌باشد. به‌منظور بررسی روابط عملکرد، صفات مرتبط با عملکرد و کیفیت میوه در 83 رگه s3 گوجه‌فرنگی، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرا شد. نتایج تجزیه واریانس تفاوت معنی‌داری برای رگه‌ها در تمام صفات مورد بررسی نشان داد. عملکرد میوه همبستگی مثبت و بسیار معنی‌داری با صفات متوسط تعداد و وزن میوه در هر رگه، طول و قطر میوه، ضخامت پریکارپ و اسید قابل تیتراسیون و همبستگی منفی و معنی‌داری با صفات تعداد روز تا رسیدگی 50 درصد میوه و شاخص رسیدگی داشت. تجزیه خوشه‌ای، رگه‌ها را در پنج گروه قرار داد و برای تمام صفات به‌جز میزان مواد جامد محلول، تفاوت بسیار معنی‌داری بین گروه‌ها وجود داشت. بر اساس مقایسه میانگین گروه‌های حاصل از تجزیه خوشه‌ای، رگه‌های گروه پنجم شامل 282، 269، 260، 280، 276، 244، 213، 247 و 412 زودرس و دارای مقادیر بالای صفات مرتبط با عملکرد میوه بودند. هم‌چنین بر اساس نمودارهای سه‌بعدی رسم‌شده، برخی از رگه‌ها دارای میزان اسید قابل تیتراسیون و نسبت طول به عرض میوه بالاتر و شاخص رسیدگی پایین‌تری نسبت به سایر رگه‌ها بودند و به‌دلیل خاصیت ماندگاری بالا، به‌عنوان رگه‌های مناسب جهت مصارف تازه‌خوری و فرآوری قابل‌توجه بوده و می‌توانند برای تولید هیبریدهای مطلوب استفاده شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of yield, yield related traits and quality properties by correlation coefficients and cluster analysis in some tomato lines

نویسندگان [English]

  • Mohammad Bojarian 1
  • Hossein Ali Asadi-Gharneh 2
  • Maryam Golabadi 3
1 Former M. Sc. Student , Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Assistant Professor, Department of Horticulture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
3 Assistant Professor, Department of Agronomy and plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

In order to evaluate yield, yield-related traits and fruit quality in 83 tomato lines, this experiment was conducted using Completely Randomized Block Design with three replications. Results of analysis of variance indicated highly significant genotypic differences for all studied traits. Fruit yield showed a positive and highly significant correlation with average of fruit number and weight, fruit length and diameter, pericarp thickness and titrable acidity (TA), and negative significant correlation with days to 50% maturing and ripening index (TSS/TA) traits. Cluster analysis classified all lines in five groups and there was highly significant difference among the clusters for all traits except TSS. Based on mean comparison between cluster analysis groups, the lines in cluster 5 including, 282, 276, 244, 213, 247 and 412 were early maturing and had a high value of yield related traits. Among the cluster 5 lines, some of them had a high titratable acidity and length to diameter ratio, and a lower TSS/TA than other line. These lines could introduce as suitable lines for fresh consumption and also for processing as a result of their long shelf life and could be used for production of suitable hybrids.

کلیدواژه‌ها [English]

  • Pericarp thickness
  • ripening index
  • total soluble solids
  • titratable acidity
Agong, S. G., Schittenhelm, S. & Friedt, W. (2001). Genotipic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasm. Journal of Food Technology African, 6(1), 13-17.
Al-Aysh, F., Kutma, H. & Al-Zouabi, A. (2012). Genetic variation, heritability and interrelationships of some important characteristics in Syrian tomato landraces. Oasis Academy Arena, 4(10), 1-5.
Anthon, G. E., LeStrange, M. & Barrett, D. M. (2011). Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing 346 tomatoes. Journal of the Science of Food and Agriculture, 91, 1175-1181.
Aoun, A. B., Lechiheb, B., Benyahya, L. & Ferchichi, A. (2013). Evaluation of fruit quality traits of traditional varieties of tomato grown in Tunisia. African Journal of Food Science, 7(10), 350-354.
Bargel, H. & Neinhuis, C. (2005). Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56, 1049-1060.
Dhankhar, S. K. & Dhankhar, B. S. (2006). Variability, heritability, correlation and path coefficient studies in tomato. Journal of Horticultural Science, 35 (1&2), 179-181.
Eshteshabul, M., Hakim, M. A., Amanullah, A. S. M. & Ahsanullah, A. S. M. (2010). An assessment of physiochemical properties of some tomato genotypes and varieties grown at Rangnur. Bangladish Research Publication Journal, 4 (3), 135-243.
Faalian, A., Ansari, H. & Kafi, M. (2009). Evaluation of the effects of different irrigation water salinity on quality and quantity indices of cherry tomato in hydroponics. Journal of Water and Soil, 26(2), 451-459.        
FAO. (2016). Faostat. http://faostat.fao.org/site/339/default.aspx.
Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 6 (1), 1-52.
Garcia, L. F., Del Moral, Y., Rharrabti, D. & Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An oncogenic approach. Agronomy Journal, 95, 266-274.
Henareh, M., Dursan, A. & Mandoulakani, B. A. (2015). Genetic diversity in tomato landraces collected from turkey and Iran revealed by morphological characters. Acta Scientiarum Polonorum Horticulture, 14(2), 87-96.
Joshi, A., Vikram, A. & Thakur, M. C. (2004). Studies on genetic variability, correlation and path analysis for yield and physico-chemical traits in tomato (Lycopersicon esculentum Mill.). Progressive Horticulture, 36 (1), 51-58.
Kacjanmarsic, N., Osvald, J. & Jakse, M. (2005). Evaluation of ten cultivars of determinate tomato (Lycopersicon esculentum Mill.) grown under different climatic conditions. Journal of Agricultural Science, 85, 321-328.
Kaushik, S. K., Tomar, D. S. & Dixit, A. K. (2011). Genetics of fruit yield and it‘s contributing characters in tomato. Journal of Agricultural Biotechnology and Sustainable Development, 3(10), 209-213.
Khokhar, S. & Magnusdottir, S. G. M. (2002). Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 50, 565-570.
Kumar, M. & Dudi, B. S. (2011). Study of correlation for yield and quality characters in tomato. Electron. Journal of Plant Breeding and Crop Science, 2(3), 453-460.
Kumar, M., Bhardwaj, M. L., Sharma, A. & Kumar, N. (2017). Assessment of Genetic Divergence in Tomato through Clustering and Principal Component Analysis under Mid Hills Conditions of Himachal Pradesh India. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 6(5), 1811-1819.
Lemma, D. (2002). Tomatoes Research Experience and Production Prospects. Research Report # 43, Ethiopia Agricultural Research Organization, EARO.
Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M. E., Siligato, F., Soressi, G. P., Tiranti, B. & Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato landraces. Theoretical and Applied Genetics, 116 (5), 657-669.
Mireki, K., Abdollahi, M. & Dehdari, M. (2014). Resistance of some Tomato (Lycopersicon esculentum L.) Cultivars to Root Knot Nematode (Meloidogyne javanica) Based on Microsatellite Marker.  Seed and Plant Improvment Journal, 1(2), 367-382. (in Farsi)
Mirshamsi Kakhki, A., Farsi, M., Shahriari, F. & Nemati, H. (2006). Estimation of heterosis and combining ability for yield components and earliness in seven tomato lines using diallel crossing method. Agricultural Sciences and Technology Journal, 20 (3), 1-12
Mwirigi, P. N., Kahangi, E. M., Nyende, A. B. & Mamati, E. G. (2009). Morphological variability within the Kenyan yam (Dioscorea spp.). Journal of Applied Biosciences, 16, 894-901.
Regassa, M. D., Mohammed, A. & Bantte, K. (2012).  Evaluation of tomato (Lycopersicon esculentum Mill.) Genotypes for yield and yield component. African Journal of Plant Science and Biotechnology, 6(1), 45-49.
Samadia, D. K., Aswani, R. C. & Dhandar, G. (2006). Genetic analysis for yield components in tomato land races. Haryana Journal of Horticultural Science, 35(1&2), 116-119.
Sharma, K. C. & Verma, S. (2001). Analysis of genetic divergence in tomato. Annals of Agricultural Research, 22, 71-73.
Shashikant, B. N., Hosamani, R. M. & Patil, B. C. (2010). Genetic variability in tomato. Karnataka Journal of Agricultural Science, 23(3), 536-537.
Sinebo, W. (2002). Yield relationship of barley grown in tropical highland environments. Crop Science, 42, 428-437.
Singh, A. K. (2005). Genetic variability, correlation and path coefficient studies in tomato (Lycopersicon esculentum Mill.) under cold arid region of Ladakh. Progrressive Horticulture, 37(2), 437-443.     
Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T. & Huebner, B. (2001). Processing effects on lycopene content and antioxidant activity of tomatoes. Journal of Agricultural and Food Chemistry, 49, 3713-3717.
Ziaf, Kh., Amjad, M., Shakeel, M., Azhar, M. & Saeed, A. (2016). Assessment of genetic diversity in tomato for fruit morphology, composition and yield. Pakistan Journal of Botany, 48(6), 2477-2483.
Znidarcic, D., Trdan, S. & Zlatic, E. (2003). Impact of Various Growing Methods on Tomato (Lycopersicon esculentum Mill.) Yield and Sensory Quality. Zbornik Biotehni.ke fakultete Univerze Ljubljani. Kmetijstvo, 81, 341-348.