تأثیر تنش شوری بر رشد، فعالیت آنزیم‌های پاداکسنده، پراکسیداسیون لیپیدی و کارایی نظام نوریII در خیار پیوندی روی پایه‌های کدو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ کشاورزی، دانشگاه تبریز

2 دانشیار، دانشکدۀ کشاورزی، دانشگاه تبریز

چکیده

شوری به‌عنوان یک تنش غیرزیستی مهم در کاهش رشد و تولید گیاهان، در نظر گرفته می­شود. شناسایی سازوکار­های بیوشیمیایی و فیزیولوژیکی که در مقاومت به تنش شوری دخالت دارند، می­تواند برای انتخاب پایه­های متحمل به شوری سودمند باشد. برای این هدف آزمایشی به‌منظور بررسی تأثیر پایه (سه پایۀ کدو شینتوزا، کبالت و روت­پاور) و تنش شوری (شاهد 0، 40، 60 و 80 میلی­مولار NaCl) روی رشد، عملکرد، سطح برگ، فعالیت آنزیم­های پاداکسنده (آنتی­اکسیدان)، مقدار مالون­دی­آلدئید (MDA) و فراسنجه (پارامتر)های نورساختی (فتوسنتزی) در برگ خیار (رقم خسیب)، 35 روز پس از تنش انجام شد. فراسنجه‌های رشدی در هر سه تیمار شوری به‌طور معنی­داری در گیاهان پیوندی نسبت به گیاهان غیر پیوندی بالاتر بود. عملکرد در گیاهان پیوندی 21-14 درصد بیشتر از گیاهان غیرپیوندی بود. فعالیت آنزیم‌های کاتالاز (CAT)، آسکوربات پراکسیداز (APX)، پلی­فنل­اکسیداز (PPO) و پراکسیداز (POD) در نتیجه تنش شوری افزایش یافت، اما این افزایش در گیاهان پیوندی 2-1/0 برابر گیاهان غیرپیوندی بود. در هر سه تیمار شوری، کاهش میزان هدایت روزنه­ای در گیاهان پیوندی در مقایسه با گیاهان غیرپیوندی به‌طور معنی­داری کمتر بود، افزون بر این پراکسیداسیون لیپیدی در گیاهان پیوندی 12-7 درصد کمتر از گیاهان غیرپیوندی بود. بیشترین بازدۀ کوانتومی نظام نوری (فتوسیستم) (Fv/Fm) II در برگ­های خیار تفاوت معنی­داری بین گیاهان پیوندی و غیرپیوندی نشان داد و این مقدار در گیاهان پیوندی 6-3 درصد بیشتر از گیاهان غیرپیوندی بود. این نتایج اشاره به این دارد که افزایش فعالیت آنزیم­های پاداکسنده، نسبت Fv/Fm و هدایت روزنه­ای در گیاهان پیوندی، مرتبط با تحمل بیشتر آن­ها به تنش شوری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of salt stress on growth, antioxidant enzymes activity, lipid peroxidation and photosystem II efficiency in cucumber grafted on cucurbit rootstock

نویسندگان [English]

  • Esmaeil Madadkhah 1
  • Sahebali Bolandnazar 2
  • Shahin Oustan 2
1 Ph.D. Candidate, Faculty of Agriculture, University of Tabriz, Iran
2 Associate Professor, Faculty of Agriculture, University of Tabriz, Iran
چکیده [English]

Salinity is considered as one of the major abiotic stress limiting growth and productivity of plants. Identification of physiological and biochemical mechanisms involved in the resistance to salinity can be useful to select salt tolerant rootstocks. For this purpose, an experiment was conducted to investigate the effects of rootstock (three cucurbit rootstock, Shintoza, Cobalt, Rootpower) and salinity stress (0, 40, 60 and 80 mM NaCl) on growth, yield, leaf area, antioxidant enzymes activity, malondialdehyde (MDA) content and Photosynthetic parameters in cucumber (cv. Khasib) leaves were determined, 35 days after salt treatments. Plant Growth parameters in all salinity treatments were significantly higher in grafted plants than non-grafted plants. Grafted plants had 14-21% higher yield than non-grafted plants. The catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POD) activity increased as a result of salinity stress, but this increase in grafted plant was 0.1-2 times of ungrafted plant. Reductions in stomatal conductance at the three salt treatments were significantly lower in the grafted plants in comparison to ungrafted plants. Moreover, lipid peroxidation (MDA content) in grafted plants was 7-12% less than ungrafted plants by salt stress. Maximal quantum yield of PS II (Fv/Fm) of cucumber leaves showed significant difference between grafted and ungrafted plant and this amount was 3-6 percent more than ungrafted plants. Results suggested that increase in activity of antioxidant enzymes, ratio of Fv/Fm and stomatal conductance in grafted plant could be associated with their greater tolerance to salinity stress.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • Grafting
  • Malondialdehyde
  • photosynthetic parameters
  • Salinity stress
  1. Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121-126.
  2. Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376.
  3. Ayaz, F. A., Kadioglu, A. & Turgut, R. (2000). Water stress effects on the contentof low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Canadian Journal of Plant Science, 80, 373-378.
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
  5. Cavalcanti, F. R., Lima, J. P. M. S., Ferreira-Silva, S. L., Viégas, R. A. & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164(5), 591-600.
  6. Chance, B. & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
  7. Chen, S. F., Yuelin, Z., Youliang, L. & Shijun, L. (2005). Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings. Acta Horticulturae Sinica, 32(4), 609-613.
  8. Colla, G., Rouphael, Y., Rea, E. & Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135, 177-185.
  9. Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G. & Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.
  10. Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257.
  11. Dixit, V., Pandey, V. & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany, 52(358), 1101-1109.
  12. El-Mashad, A. A. A. & Mohamed, H. I. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249(3), 625-635.
  13. Fan, M., Bie, Z., Krumbein, A. & Schwarz, D. (2011). Salinity stress in tomatoes can be alleviated by grafting and potassium depending on the rootstock and K-concentration employed. Scientia Horticulturae, 130(3), 615-623.
  14. Han, H. S. & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210-215.
  15. Harinasut, P., Poonsopa, D., Roengmongkol, K. & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29(10), 109-113.
  16. He, Y., Zhu, Z., Yang, J., Ni, X. & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278.
  17. Huang, Y., Bie, Z., Liu, P., Niu, M., Zhen, A., Liu, Z. & Wang, B. (2013). Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Scientia Horticulturae, 149, 47-54.
  18. Jiang, Q., Roche, D., Monaco, T. A. & Hole, D. (2006). Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biology, 8(04), 515-521.
  19. Khayyat, M., Tehranifar, A., Davarynejad, G. H. & Sayyari-Zahan, M. H. (2014). Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of ‘Malas-e-Saveh’and ‘Shishe-Kab’pomegranates in response to salinity stress. Photosynthetica, 52(2), 301-312.
  20. KholdBrin, B. & eslamZadh, I. (2001). Mineral Nutrition of plants. (2nd ed.). Publication of Shiraz University. 432p. (in Farsi)
  21. Lee, S. H. & Blair, I. A. (2000). Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chemical Research in Toxicology, 13(8), 698-702.
  22. Lee, J. M. & Oda, M. (2010). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, Volume 28, 61-124.
  23. Lin, J. Y. & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147.
  24. Liu, Z. X., Bie, Z. L., Huang, Y., Zhen, A., Lei, B. & Zhang, H. Y. (2012). Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica, 50(1), 152-160.
  25. Mayer, A. M. & Harel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18(2), 193-215.
  26. Miller, G. A. D., Suzuki, N., Ciftci‐yilmaz, A. N. & Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453-467.
  27. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
  28. Orcutt, D. M. (2000). The physiology of plants under stress: soil and biotic factors. (pp.177-235.) John Wiley & Sons.
  29. Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.
  30. Romero, L., Belakbir, A., Ragala, L. & Ruiz, M. (1997). Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition, 43(4), 855-862.
  31. Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1), 49-58.
  32. Roosta, H. R. & Karimi, H. R. (2012). Effects of alkali-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock. Journal of Plant Nutrition, 35(12), 1843-1852
  33. Sairam, R. K., Rao, K. V. & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046.
  34. Shalata, A., Mittova, V., Volokita, M., Guy, M. & Tal, M. (2001). Response of the cultivated tomato and its wild salt‐tolerant relative Lycopersiconpennellii to salt‐dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112(4), 487-494.
  35. Wei, G. P., Yang, L. F., Zhu, Y. L. & Chen, G. (2009). Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Scientia Horticulturae, 120(4), 443-451.
  36. Xu, P. L., Guo, Y. K., Bai, J. G., Shang, L. & Wang, X. J. (2008). Effects of long‐term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiologia Plantarum, 132(4), 467-478.
  37. Yetisir, H., Sari, N. &Yücel, S. (2003). Rootstock resistance to fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31(2), 163-169.
  38. Zhen, A., Bie, Z., Huang, Y., Liu, Z. & Li, Q. (2010). Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Science & Plant Nutrition, 56(2), 263-271.
  39. Zhu, S. N., Guo, S. R., Zhang, G. H. & Li, J. (2008). Activities of antioxidant enzymes and photosynthetic characteristics in grafted watermelon seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 28, 2285-2291.