افزایش جذب عنصرهای غذایی و رنگدانه‌های نورساختی گل حنای گینه‌نو (Impatiens hawkeri) با محلول‌پاشی سیلیسیم در محیط آبکشت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده کشاورزی، دانشگاه شهرکرد،‌ ایران

2 دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شهرکرد،‌ ایران

چکیده

سیلیسیم به‌عنوان یک عنصر سودمند تأثیر چندی بر رشد، عملکرد، بهبود تحمل به تنش­های محیطی و بهبود تعادل عنصرهای غذایی در گیاهان دارد. به همین منظور در تابستان سال 1393 آزمایشی در قالب طرح کامل تصادفی با چهار سطح محلول­پاشی سیلیسیم شامل 0، 40، 80 و 120 میلی­گرم بر لیتر و سه تکرار (هر تکرار شامل پنج گلدان 7/0 لیتری) به مدت دو ماه روی گل حنای گینه‌نو Impatiens hawkeri W. Bull.در شرایط گلخانه اجرا شد. در پایان آزمایش، میزان نیتروژن، فسفر، پتاسیم، کلسیم، منیزیم، سیلیسیم برگ، آنتوسیانین­ها، سبزینه (کلروفیل)­هایa، bو کل اندازه­گیری شدند. نتایج نشان داد، بیشترین نیتروژن بافت (8/2%)، فسفر (41/0%) و پتاسیم (68/2%) مربوط به تیمار سیلیسیم 40 میلی­گرم بر لیتر بود. همچنین، بیشترین میزان کلسیم (75/3%) و منیزیم (81/1%) مربوط به تیمار سیلیسیم 80 میلی­گرم بر لیتر و بیشترین میزان سیلیسیم برگ (6/15 میلی­گرم بر کیلوگرم وزن تر) در تیمار سیلیسیم 120 میلی­گرم بر لیتر مشاهده شد. بیشترین میزان سبزینه­ها (76/20 میلی­گرم بر گرم وزن تر) و آنتوسیانین­های گلبرگ­ها (1/32 میلی­گرم بر گرم وزن تر) در تیمار 120 میلی­گرم بر لیتر سیلیسیم به دست آمد. به‌طورکلی، کاربرد سیلیسیم 120 میلی­گرم بر لیتر باعث بهبود گل حنای گینه‌نو شده و به‌عنوان عنصری سودمند در پرورش این گیاه توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Increasing nutrient elements absorption and photosynthetic pigments by silicon spray in New Guinea impatiens (Impatiens hawkeri) in soilless conditions

نویسندگان [English]

  • Saeed Reezi 1
  • Leila Mohammadi 2
  • Rahim Barzegar 1
1 Assistant Professor, Faculty of Agriculture, Shahrekord University, Iran
2 Former M. Sc. Student, Faculty of Agriculture, Shahrekord University, Iran
چکیده [English]

Silicon as a beneficialelement has several effects on growth, yield, abiotic stresses tolerance and nutrient element balance in plants. For this purpose, an experiment established in Complete Randomized Design with four levels of silicon foliar spray (0, 40, 80 and 120 mg.L-1) with three replications (each replication contained five 0.7 liter pots) on Impatiens hawkeri in greenhouse conditions during 2 months in summer 2015. Different traits such as nitrogen, phosphorous, calcium, magnesium and leaf silicon content, anthocyanin, a, b and total chlorophyll contents were measured. Results showed that the most N (2.8%), P (0.41 %) and K (2.68 %) contents were related to 40 mg.L-1 of silicon treatment. However, the most Ca (3.75 %) and Mg (1.81 %) contents obtained in 80 mg.L-1 silicon treatment, but the most Si content (15.6 mg/kgfw) obtained in 120 mg.L-1 treatment. Total chlorophyll (20.76 mg/kgfw) and petal anthocyanin content (32.1 mg/kgfw) was the highest in 120 mg.L-1 Si treatment. Generally, Si can be suggested as a beneficial element (120 mg.L-1 ) for New Guinea Impateins.

کلیدواژه‌ها [English]

  • Anthocyanin Petal
  • Chlorophyll
  • nitrogen
  • potassium
  • Silicon
  1. Abdelkader, M. A., Ibrahim, M. A. & Burras, L. C. (2016). Effect of silicon application on roselle (Hibiscus sabdariffa L.) grown in a vertisol in Egypt. Journal of Soil Science and Environmental Management, 7(4) 45-52.
  2. Al-aghabary, K., Zhujun, Z. & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101-2115.
  3. Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronormy Journal, 23, 112-121.
  4. Asmar, S. A., Pasqual, M., Rodrigues, F. A., Araujo, A. G. D., Pio, L. A. S., Silva S. D. O. (2011) Sources of silicon in the development of micropropagated seedlings of banana ‘Maçã’. Cienc Rural, 41, 1127-1131.
  5. Bugbee, B. (2004). Nutrient management in recirculating hydroponic culture. Acta Horticulturae, 648, 99-112.
  6. Chen, J., Caldwell, R. D., Robinson, C. A. & Steinkamp, R. (2000). Silicon: The Estranged Medium Element. Bulletin 341, Institute of Food and Agricultural Science, University of Florida, 1-5.
  7. Chen, J., Caldwell, R. D., Robinson, C. A. & Steinkamp, R. (2001). Let’s Put the Si back into Soil- part II. Greenhouse Production News. 11, 44-47.
  8. Elliot, C. L. & Synder, G. H. (1991). Autoclave induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry, 39, 111-119.
  9. Emami, A. (1996). Analysis methods plant. Technical Bulletin Number 982. Soil and Water Research Institute. 128 PP.
  10. Epstein, E. & Bloom, A. (2005). Mineral Nutrition of Plants: Principles and Perspectives. 2nd ed. Sinauer Associates, Sunderland, MA.
  11. Gong, H. & Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiology Plant, 34, 1589-1594.
  12. Kamenidou, S., Cavins, T. J. & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse Zinnia production. Scientia Horticulturae, 119, 297-301.
  13. Kamenidou, S., Cavins, T. J. & Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123(3), 390-394.
  14. Katarzyna, W. & Regina, D. (2011). The effect of silicon foliar application on the development of season ornamental plants. Part II: Argyranthemum frutescens ‘Blazer Rose’, Xerochrysum bracteatum ‘Gold’, Osteospermum ecklonis ‘Grande Pink Blush’ and Gaura lindheimeri ‘Corinas Choice’. Acta Agrobotanica, 64(4), 107-114.
  15. Khoshgoftar Manesh, A. H. (2010). Advanced concepts in plant nutrition. Isfahan University of Technology Publication Center, Isfahan.
  16. Khoshkhui, M., Sheibani, B., Roohani, I. & Tafazalii, E. (2002). Principles of Horticulture. Shiraz University Press, Shiraz.
  17. Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H. & Ding, R. X. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt stressed barley (Hordeum vulgare L.). Plant Physiology, 160, 1157-1164.
  18. Lim, M. Y., Lee, E. J., Jana, S., Sivanesan, I. & Jeong, B. R. (2012). Effect of potassium silicate on growth ad leaf epidermal characteristics of begonia and pansy grown in vitro. Korean Journal of Horticultural Science Technology, 30, 579-585.
  19. Locke, J. C., Pitchay, D. & Frantz, J. M. (2004). Effect of nitrogen, potassium, and silicon nutrition on disease susceptibility of various ornamental crop species. The University of Toledo. Fact Sheet.
  20. Mali, M. & Aery, N. C. (2008a). Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. Journal of Plant Nutrition, 31, 1867-1876.
  21. Mali, M. & Aery, N. C. (2008b). Silicon effects on nodule growth, dry matter production, and mineral nutrition of cowpea (Vigna unguiculata). Journal of Plant Nutrition and Soil Science, 171, 835-840.
  22. Matichenkov, V. V. & Calvert, D. V. (2002). Silicon as a beneficial element for sugarcane. Journal American Society of Sugarcane Technologists, 22, 21-30.
  23. Mc Ginnity, P. (2015). Silicon and its Role in Crop Production. A LITERATURE REVIEW. 27.
  24. Mills, H. A. & Jones, J. r J. B. (1996). Plant Analysis Handbook II: a practical sampling, preparation, analysis, and interpretation Guide. Micro-Macro Publishing: Athens, GA.
  25. Morgan, L. (1999). Silica in hydroponics. Practical Hydroponics and Greenhouses, 51-66.
  26. Morgan, R. (2007). Impatiens: The Vibrant World of Busy Lizzies, Balsams, and Touch-me-nots, 220 pp. timber Press, Portland, Oregon.
  27. Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J. & Zhou, W. J. (2009). Silicon improves the tolerance to water deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29(1), 106-115.
  28. Reezi, S., Babalar, M. & Kalantari, S. (2009). Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa× hybrida L.) ‘Hot Lady’. African Journal of Biotechnology, 8, 1502-1508.
  29. Reezi, S. (2010). Effect of silicon and salicylic acid on quality of cut roses and powdery mildew disease in hydroponic system. Ph.D. Thesis. Faculty of Agriculture Tehran University, Tehran.
  30. Sadgrove, N. (2006). Nutrient and moisture economics in diatomaceous earth amended growth media. Southern Cross University.
  31. Savvas, D., Manos, G., Kotsiras, A. & Souvaliotis, S. (2002). Effects of silicon and nutrient induced salinity on yield, flower quality, and nutrient uptake of gerbera grown in a closed hydroponic system. Journal Applied Botany and food quality, 76, 153-158.
  32. Sivanesan, I., Son, M. S., Lee, J. P. & Jeong, B. R. (2010). Effects of silicon on growth of Tagetes patula L. ‘Boy Orange’ and ‘Yellow Boy’ seedlings cultured in an environment controlled chamber. Propagation of Ornamental Plants, 10(3), 136-140.
  33. Sivanesan, I., Son, M. S., Song, J. Y. & Jeong, B. R. (2013). Silicon supply through the subirrigation system affects growth of three Chrysanthemum cultivars. Horticulture Environment and Biotechnology, 54(1), 14-19.
  34. Sivanesan, I. & Park, S.W. (2014). The role of silicon in plant tissue culture. Front Plant Science, 5(571), 4.
  35. Son, M. S., Oh, H. J., Song, J. Y., Lime, M. Y., Iyyakkannu, S. & Jeong, B. R. (2012). Effect of silicon source and application method on growth of Kalanchoe 'Peperu'. Korean Journal of Horticultural Science and Technology, 30, 250-255.
  36. Sonali, J. & Byoung, R. J. (2014). Silicon: The most underappreciated element in horticultural crops. Trends in Horticultural Research, 4(1), 1-19.
  37. Sun, C. W., Liang, Y. C. & Romheld, V. (2005). Effects of foliar and root applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Journal of Plant Pathology, 54, 678-685.
  38. Tesfagiorgis, H. B. & Laing, M. D. (2013). The effects of silicon level in nutrient solution on the uptake and distribution of silicon in zucchini and zinnia, and its interaction with the uptake of selected elements. African Journal of Biotechnology, 12(14), 1617-1623.
  39. Thepkam, S. & Ruamrungsri, S. (2013). Effects of calcium silicate on growth and development of Phalaenopsis hybrid. International Graduate Research Conference, 27-32.
  40. Trouillas, P., Sancho-García, J. C., De Freitas, V., Gierschner, J., Otyepka, M. & Dangles, O. (2016). Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment, Chemical Reviews, 116(9), 4937-4982.
  41. Voogt, W. & Sonneveld, C. (2001). Silicon in horticultural crops grown in soilless culture. In: Datnoff L. E., Snyder, G. H. & Korndorfer, G. H. (Ed): Silicon in Agriculture. Elsevier, Amsterdam, pp. 115- 131.
  42. Wang, H., Li, C. H. & Liang, Y. (2001). Agricultural utilization of silicon in China. In Datnoff L. E., Snyder G. H. and Korndrfer, G. H., (Eds.), Silicon in Agriculture. Elsevier, Amsterdam, pp. 343-358.
  43. Whitted-Haag, B., Kopsell, D. E., Kopsell, D. A. & Rhykerd, R. L. (2014). Foliar silicon and titanium applications influence growth and quality characteristics of annuals bedding plants. The Open Horticulture Journal, 7, 6-15.
  44. Wróblewska, K. & Dębicz, R. (2011). The effect of silicon foliar application on the development of season ornamental plants.part ii: Argyranthemum frutescens ‘Blazer Rose’, Xerochrysum bracteatum ‘Gold’, Osteospermum ecklonis ‘Grande Pink Blush’ and Gaura lindheimeri ‘Corinas Choice’. Acta Agrobotanica, 64(4), 107-114.
  45. Yousefi, M., Enteshari, S. & Saadatmand, M. (2014). Effects of silica treatment on some morphological, anatomical and physiological characteristics of Iranian borage (Echium amoenum Fisch & C.A. Mey). Journal of Science and Technology of Greenhouse Culture, 5(18), 83-94. (in Farsi)