تأثیر هدایت‌ الکتریکی محلول غذایی بر رشد و نمو گل رز شاخه بریدۀ رقم ’دولسویتا‘ در نظام آبکشت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 دانشیار، گروه خاکشناسی دانشکدۀ کشاورزی دانشگاه تربیت مدرس

چکیده

تولید گل رز تابعی از صفات ژنتیکی و ویژگی­های محیطی از جمله کمیت و کیفیت آب آبیاری است. با توجه به محدودیت دسترسی به منابع آب با کیفیت در اغلب دشت­های کشور، در این پژوهش تأثیر هدایت الکتریکی آب آبیاری ناشی از افزایش غلظت سدیم­کلراید بر عملکرد کمی و کیفی گل رز رقم دولسویتا در نظام آبکشت (هیدروپونیک) بررسی شد. تیمارهای آزمایشی شامل محلول غذایی با چهار سطح هدایت الکتریکی 6/1، 8/1، 0/2 و 2/2 دسی­زیمنس بر متر، به ترتیب 18/3، 57/4، 69/5 و 87/6 میلی­مولار سدیم و 58/1، 71/2، 76/3 و 11/5 میلی­مولار کلراید، داشت. نتایج نشان داد، در صورت تنظیم بهینۀ غلظت و نسبت یون‌ها در فرمول محلول غذایی، تیمارهای آزمایشی نه‌تنها بر عملکرد کمی و کیفی گل رز رقم دولسویتا تأثیر معنی­داری ندارند، بلکه با افزایش هدایت الکتریکی سنگ‌گیری گلبرگ­ها مقداری بهبود می‌یابد. به‌رغم اعمال 40 درصد کسر آبشویی، هدایت ­الکتریکی زهاب گلدان­ها به‌تدریج افزایش یافت. همچنین با افزایش غلظت یون­های سدیم و کلراید، تنها غلظت کلراید در بافت برگ­ها به‌طور معنی­داری افزایش یافت. درمجموع نتایج این پژوهش نشان داد، با بهینه‌سازی فرمول محلول غذایی، گل رز رقم دولسویتا تغییر در هدایت الکتریکی محلول غذایی در بازۀ 6/1 تا 2/2 دسی­زیمنس بر متر (ناشی از افزایش سدیم کلراید) را بدون کاهش در عملکرد و یا کیفیت تحمل می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of electrical conductivity of nutrient solution on growth and development of rose cut flower cv. Dolce vita in hydroponic system

نویسندگان [English]

  • Davoud Asgari 1
  • Mohsen Kafi 2
  • Rouhangiz Naderi 2
  • Rasoul Rahnemaie 3
1 Former Ph.D. Student and Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Rose production is a function of the genetic traits and environmental characteristics, including quantity and quality of the irrigation water. Due to the limitation in availability of high quality water resources in most regions of Iran, the effect of electrical conductivity of irrigation water (due to variation in sodium chloride concentration) was investigated on the yield and quality of rose cv. Dolce vita in hydroponic system. The experimental treatments included four nutrient solutions with different electrical conductivities of 1.6, 1.8, 2.0 and 2.2 dS m-1 containing 3.18, 4.57, 5.69 and 6.87 mM sodium and 1.58, 2.71, 3.76 and 5.11 mM chloride concentrations, respectively. Results indicated that treatments not only had no significant effect on quantitative and qualitative performance of rose cv. Dolce vita, but also they improved petal pigmentation only if ions concentrations and ions ratios were properly adjusted in the nutrient solutions. Despite applying 40 percent leaching fraction, electrical conductivities of pots drain water were gradually increased. In addition, by increasing sodium and chloride ions concentrations, only chloride concentration was significantly increased in leaf tissue. Overall, results of this research indicated that by optimizing the nutrient solution, rose cv. Dolce vita tolerated variation in electrical conductivity of nutrient solutions in the range of 1.6 to 2.2 dS m-1 (because of variation in NaCl concentration) without any reduction in performance or quality.

کلیدواژه‌ها [English]

  • Chloride
  • hydroponic
  • ion composition
  • potassium
  • sodium
  1. A.O.A.C. (1995). Official method of analysis. (16th ed.). Association of Official Analytical Chemists International, Arlington Virginia, USA.
  2. Ahmad, I., Aslam Khan, M., Qasim, M., Ahmad, R. & Samad, T. (2013). Growth, Yield and Quality of Rosa hybrida L. as Influenced by NaCl Salinity. Journal of Ornamental and Horticultural Plants, 3, 143-153.
  3. Ali, E. F., Bazaid, S. A. & Hassan, F. A. S. (2012). Salinity Tolerance of Taif Roses by Gibberellic Acid (GA3). International Journal of Science and Research, 3(11), 184-192.
  4. Bernstein, L., Francois, L. E. & Clark, R. A. (1972(. Salt tolerance of ornamental shrubs and ground covers. Journal of the American Society for Horticultural Science, 97, 550-556.
  5. Bass, R. & van der Berg. (1999). Sodium accumulation and nutrient discharge in recirculation systems: A case study with roses. Acta Horticulturae, 507, 157-164.
  6. Cabrera, R. I. (2003). Mineral nutrition. In: A.V. Roberts, Debener, T. & S. Gudin (Ed), Encyclopedia of rose science. Academic Press, Oxford, UK.
  7. Cabrera, R. I. & Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. American Society for Horticultural Sciences, 38, 533-536.
  8. Cabrera, R. I., Solis-Perez, A. R. & Sloan, J. J. (2009). Greenhouse Rose Yield & Ion Accumulation Responses to Salt Stress as Modulated by Rootstock Selection. American Society for Horticultural Sciences, 44, 2000-2008.
  9. Cai, X., Niu, G., Starman, T. & Hall, C. (2014). Response of six garden roses (Rosa × hybrida L.) to salt stress. Scientia Horticulturae, 168, 27-32.
  10. Chimonidou, P. D. (1997). Response of Roses to Salinity & Irrigation. In: Proceeding of the 1th Trans-National Meeting on Salinity as Limiting Factor for Agricultural Productivity in The Mediterranean Basin, 2-7 June, Napoli, Italy.
  11. Edwards, I. K., Kalra, Y. P. & Radford, F. G. (1981). Chloride determination and levels in the soil plant environment. Environmental Pollution, 2, 109-117.
  12. Gupta, B. & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants. Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 18 pages. Review
  13. Hughes, H. & Hanan, J. J. (1978). Effect of salinity in water supplies on greenhouse rose production. Journal of the American Society for Horticultural Science, 103, 694-699.
  14. James, R. A., Blake, C., Byrt, C. S. & Munns, R. (2011). Major genes for Na+ exclusion, Nax1 and Nax2 wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 6(8), 2939-2947.
  15. Kalra, P. Y. (1998). Handbook of references methods for plant analysis (1th ed.). CRC press.
  16. Khan, M. I. R., Iqbal, N., Masood, A. & Khan, N. A. (2012). Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. Pedosphere, 22, 746-754.
  17. Li, X. G., Li, F. M., Ma, Q. F. & Cui, Z. J. (2006). Interactions of NaCl and Na2SO4 on soil organic C mineralization after addition of maize straws. Soil Biology and Biochemistry, 38, 2328-2335.
  18. Lichtenthaler, H. K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current protocols in food analytical chemistry, pp. F4.3.1–F4.3.8. Wiley, New York.
  19. Lex Company (2016). The Rose Creators. Retrieved June 28, 2016, from http://www.lex.nl/catalog/product.web?id=16&p=dolce-vitaplus
  20. Mercurio, G. )2007(. Cut rose cultivation around the world. (1st ed.). Schreurs, The Netherlands.
  21. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  22. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645–663.
  23. Niu, G. & Rodriguez, D. S. (2008). Responses of Growth and Ion Uptake of Four Rose Rootstocks to Chloride- or Sulfate-dominated Salinity. Journal of the American Society for Horticultural Science, 133(5), 663-669.
  24. Niu, G., Rodriguez, D. S. & Aguiniga, L. (2008). Effect of saline water irrigation on growth and physiological responses of three rose rootstocks. Journal of the American Society for Horticultural Science, 43, 1479-1484.
  25. Rahnama, A., James, R. A., Poustini, K. & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255-263.
  26. Raviv, M., Krasnovsky, A., Medina, S. & Reuveni, R. (1998). Assessment of various control strategies for recirculation of greenhouse effluents under semi-arid conditions. Journal of Horticultural Science and Biotechnology, 73, 485-491.
  27. Rozema, J. & Flowers, T. (2008). Ecology. Crops for a salinized world, Science, 322(5907), 1478-1480.
  28. Sadasivaiah, S. P. & Holley, W. D. (1973). Ion balance in nutrition of greenhouse roses. Roses Incorporated Bulleting Supplement. November. P. 1-27.
  29. Wahome, P. K., Jesch, H. H. & Grittner, I. (2001). Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis ‘Major’ and R. rubiginosa. Scientia Horticulturae, 87, 207-216.
  30. Western Australia Department of Agriculture. (2003). Salinity Tolerance.Retrieved May 10, 2013, from http://staneyo.com/news files/water/salinity-chart.html.
  31. White, J. W. (1987). Fertilization. In: R.W. Langhans (Ed.). Roses. Roses Incorporated, Haslett, Michigan.
  32. Yaron, B., N. Zieslin, & Halevy, A. H. (1969). Response of 'Baccara' roses to saline irrigation. Journal of the American Society for Horticultural Science, 94, 481-484.