بررسی پاسخ‌های ریخت‌شناختی و بیوشیمیایی برخی گونه‌های چمن تلقیح شده با قارچ قارچریشه‌ای در شرایط تنش عنصر سرب

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکتری، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت

2 استادیار، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت

3 دانشیار، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت

4 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

5 دانشیار، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

کشت گیاهان پوششی مناسب در مدیریت خاک‌ و آب‌های آلوده به فلزهای سنگین می‌تواند مهم باشد. در این پژوهش، دو گونه قارچ قارچریشه‌ای یا مایکوریزا (Glomus mosseaeGlomus intraradices) بر جذب عنصر سرب، بهبود ویژگی‌های رشدی و تقویت سامانۀ پاداکسندگی (آنتی‌اکسیدانی) چهار گونه چمن سردسیری، فستوکای پابلند (Festuca aurandiance)، فستوکای آبی (Festuca ovina)، چچم چندساله (Lolium perenne) و علف گندمی بلند (Agropyron elongatum) بررسی شد. گیاهان تلقیح‌شده با قارچریشه‌ با غلظت‌های مختلف سرب (0، 2000 و 3000 میکرومولار) تیمار شدند. نتایج بررسی‌ها نشان داد، قارچ‌ قارچریشه، به‌ویژه G. intraradices، توانایی پرگنه شدن (کلونیزاسیون) با ریشۀ گونه‌های چمن در خاک آلوده به سرب را دارند. بیشترین درصد پرگنه شدن در گونۀ علف گندمی بلند مشاهده شد. قارچ‌های قارچریشه سبب افزایش وزن خشک اندام‌های هوایی، ریشه و میزان جذب سرب در گونه‌های مختلف چمن شدند. گونۀ فستوکای پابلند تلقیح‌شده با قارچ قارچریشۀ گونۀ G. intraradices بیشترین میزان جذب سرب را داشت. افزون بر این، قارچ قارچریشه مانع افزایش بیشتر پراکسید هیدروژن و مالون‌دی‌آلدئید برگ در رویارویی با تنش سرب شد و میزان فعالیت آنزیم‌های کاتالاز، پراکسیداز و سوپراکسید دیسموتاز را در گونه‌های مختلف چمن افزایش داد. درمجموع، قارچ قارچریشه توانست با تقویت سامانۀ پاداکسندگی و بهبود رشد چمن‌ها میزان سرب بیشتری را جذب کند، بدون آنکه نشانه‌های آسیب‌دیدگی نشان دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The study of morphological and biochemical responses of some mycorrhizae-inoculated turfgrass species to lead stress

نویسندگان [English]

  • Kamal Gholamipour Fard 1
  • Hedayat Zakizadeh 2
  • Mahmood Ghasemnezhad 3
  • Mohsen Kafi 4
  • Farhad Rejali 5
1 Ph.D. Candidate, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assistant Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Associate Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
4 Professor, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
5 Associate Professor, Soil and Water Research Institute, Agricultural Research and Development Research Organization, Karaj, Iran
چکیده [English]

Cultivation of appropriate cover plants could be important on managing polluted soil and water with heavy metals. In the present study, effects of two mycorrhizae species (Glomus intraradices and Glomus mosseae) on lead accumulation, improving growth parameters and enzymatic antioxidant system of four cool-season turfgrass species, Festuca aurandiance, Festuca ovina, Lolium perenne, and Agropyron elongatum were investigated.Mycorrhizae inoculated plants were treated with different lead concentrations (0, 2000 and 3000 µM). Results showed that mycorrhizae fungus, especially G. intraradices has potential to colonizing with roots of different turfgrass species under lead polluted soil. The highest colonization percentage was found with Agropyron elongatum species. Mycorrhizae fungi led to an increase in root and shoot dry weight and Pb uptake at all studied turfgrass species. The maximum Pb uptake was found in Festuca aurandiance whichinoculated by G. intraradices. Furthermore, mycorrhizae fungi could suppress increasing of leaf H2O2 andmalondialdehyde when exposed to lead stress and increased antioxidant enzyme activities such as catalase, peroxidase and superoxide dismutase in all turfgrass species. Overall, mycorrhizae could increase lead accumulation by enhancing enzymatic antioxidant system and improving turfgrass growth without observing any damage symptoms.

کلیدواژه‌ها [English]

  • Agropyron
  • enzymatic antioxidants
  • Festuca
  • Heavy metals
  • Phytoremediation
  1. Aboulroos, S. A., Helal, M. I. D. & Kamel, M. M. (2006). Remediation of Pb and Cd polluted soils using in situ immobilization and phytoextraction techniques. Soil & Sediment Contamination, 15, 199-215.
  2. Al Agely, A., Sylvia, D. & Ma, L. Q. (2005). Mycorrhizae Increase Arsenic Uptake by the Hyperaccumulator Chinese Brake Fern (L.) (Pteris vittata L.). Journal of environmental quality, 34: 2181-2186.
  3. Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
  4. Benavides, M. P., Gallego, S. M. & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 21-34.
  5. Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y. & Smith, S. E. (2007). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374-380.
  6. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S. & Berta, G. (2005). The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59, 21-29.
  7. Diels, L., Van der Lelie, N. & Bastiaens, L. (2002). New developments in treatment of heavy metal contaminated soils. Reviews in Environmental Science and Biotechnology, 1, 75-82.
  8. Etim, E. E. (2012). Phytoremediation and its mechanisms: a review. International Journal of Environment and Bioenergy, 2, 120-136.
  9. Gamito, P., Arsenio, A., Faleiro, M. L., Brito, J. C. & Beltrao, J. (1999). The influence of waste water treatment on irrigation water quality. In: Improved Crop quality by Nutrient management (pp. 267-270). Springer, Dordrecht.‏
  10. Garg, N. & Aggarwal, N. (2012). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regulation, 66, 9-26.
  11. Garg, N. & Chandel, S. (2015). Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regulation, 75, 521-534.
  12. Gholamipour, K. Ghasemnezhad, M. Zakizadeh, H. Kafi, M & Rejali, F. (2016). Evaluation of six cold-season turfgrasses  responses  to  lead  phytotoxicity  for  screening  a  tolerant  species. Caspian Journal of Environmental Sciences. 14. In Press.
  13. González-Guerrero, M., Benabdellah, K., Ferrol, N. & Azcón-Aguilar, C. (2009). Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. Mycorrhizas-Functional Processes and Ecological Impact. Springer.
  14. Gupta, M. L., Prasad, A., Ram, M. & Kumal, S. (2002). Effect of the AM Fungus G. fasciculatum on the Essential Oil Yield Condition Related Characters and Nutrient Acquisition in the Crops of Different Cultivars of Menthol Mint (Mentha arvensis) under Field Conditions. Bioresource Technology, 81, 77-79.
  15. Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.
  16. Hu, J., Wu, S., Wu, F., Leung, H. M., Lin, X. & Wong, M. H. (2013). Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere, 93, 1359-1365.
  17. Jiang, Q. Y., Zhuo, F., Long, Sh. H., Zhao, H. D., Yang, D. J., Ye, Zh. H., Li, Sh. Sh. & Jing, Y. X. (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?. Scientific Reports, 6, 21805.
  18. Kanwal, S., Bano, A. & Malik, R. N. (2015). Effects of Arbuscular Mycorrhizal Fungi on Metals Uptake, Physiological and Biochemical Response of Medicago Sativa L. with Increasing Zn and Cd Concentrations in Soil. American Journal of Plant Sciences, 6, 2906.
  19. Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355-364.
  20. Kormanik, P. P. & McGraw, A. C. (1982). Quantification of vesicular-arbuscular mycorrhizae in plant roots. IN: Methods and Principles of Mycorrhizal Research (N. C. Schenck, Ed.), pp. 37-47. The American Phytopathological Society, St. Paul, Minn.
  21. Li, X., Bu, N., Li, Y., Ma, L., Xin, S. & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213, 55-61.
  22. Li, X. L. & Feng, G. (2001). Ecology and physiology of arbuscular mycorrhiza. Huawen, Beijing.
  23. Losada, H., Rivera, J., Vieyra, J. & Cortés, J. (2009). The role of urban agriculture in waste management in Mexico City. Urban Agriculture Magazine, 40-41.
  24. Malekzadeh, E., Alikhani, H. A., Savaghebi-Firoozabadi, G. R. & Zarei, M. (2011). Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 9, 1213-1223.
  25. McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Phytoremediation. Springer.
  26. Miransari, M. (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 12, 563-569. (in Farsi)
  27. Najafi, P. (2008). Studying the microbial contamination from irrigation grass with municipal treated wastewater. Journal of Ecology, 44, 32-27.
  28. Orłowska, E., Przybyłowicz, W., Orlowski, D., Turnau, K. & Mesjasz-Przybyłowicz, J. (2011). The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution, 159, 3730-3738.
  29. Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M. & Das, P. (2010). Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 177, 465-474.
  30. Qu, R. L., Li, D., Du, R. & Qu, R. (2003). Lead uptake by roots of four turfgrass species in hydroponic cultures. HortScience, 38, 623-626.
  31. Rabie, H. G. (2005). Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. African Journal of Biotechnology, 4(4), 332.
  32. Sergiev, I., Alexieva, V. & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes rendus de l'Académie Bulgare des Sciences, 51, 121-124.
  33. Souza, L. A., Andrade, S. A., Souza, S. C. & Schiavinato, M. A. (2011). Tolerância e potencial fitorremediador de stizolobium aterrimum associada ao fungo micorrízico arbuscular glomus etunicatum em solo contaminado por chumbo. Revista Brasileira de Ciência do Solo, 35, 1441-1451.
  34. Sun, S. Q., He, M., Cao, T., Yusuyin, Y., Han, W. & Li, J. L. (2010). Antioxidative responses related to H2O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. Environmental Monitoring and Assessment, 163, 303-312.
  35. Sun, Y. B., Zhou, Q. X., An, J., Liu, W. T. & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106-112.
  36. Taghizadeh, M., Kafi, M. & Ftahi Moghadam, M. R. (2015). Breeding by In vitro Culture to Improve Tolerance and Accumulation of Lead in Cynodon Dactylon L. Journal of Agricultural Science and Technology, 17, 1851-1860.
  37. Tong, S., Schirnding, Y. E. V. & Prapamontol, T. (2000). Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization, 78, 1068-1077.
  38. Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G. & Berta, G. (2006). Arbuscular mycorrhizae increase the arsenic translocation factor in the as hyperaccumulating fern Pteris vittata L. Chemosphere, 65, 74-81.
  39. Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M. & Azcón, R. (2003). Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environmental Pollution, 126, 179-189.
  40. Wang, P., Zhang, S., Wang, C. & Lu, J. (2012). Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotoxicology and Environmental Safety, 78, 28-34.
  41. Wen, L. & Fu, D. F. (2008). The phytoremediation of ryegrass on multiple heavy metal soils by two reinforced methods. China Environmental Science, 9, 786-790.
  42. Wu, Q. S., Xia, R. X. & Zou, Y. N. (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44, 122-128.
  43. Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J. & Tang, M. (2015). The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L. PloS one, 10(12), e0145726.
  44. Yang, Y., Liang, Y., Han, X., Chiu, T., Ghosh, A., Chen, H. & Tang, M. (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 6, 462-469.