بررسی تغییرپذیریهای ناشی از خشکی در نژادگان طبیعی مرکبات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مؤسسۀ تحقیقات علوم باغبانی، پژوهشکدۀ مرکبات و میوه‌های نیمه گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران

2 استاد، دانشکدۀ علوم کشاورزی دانشگاه گیلان، رشت، ایران

3 محقق مؤسسۀ تحقیقات علوم باغبانی، پژوهشکدۀ مرکبات و میوه‌های نیمه گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر، ایران

چکیده

درختان مرکبات دمای پایین و زهکشی ضعیف خاک را به‌خوبی تحمل نکرده و در صورت پرورش آن‌ها در مناطق گرم در معرض تأثیر زیانبار خشکی‌ قرار می‌گیرند. این پژوهش، به‌منظور بررسی تأثیر خشکی بر محتوای نسبی آب برگ، نشت یونی، میزان تجمع مالون‌د‌آلدیید، کربوهیدرات محلول کل و عنصرهای پتاسیم و کلسیم در دانهال‌های نوسلار نژادگان (ژنوتیپ) طبیعی مرکبات به همراه دو پایۀ حساس و مقاوم به خشکی به‌صورت آزمایش فاکتوریل در قالب طرح کامل تصادفی با سه تکرار در شرایط گلخانه‌ای انجام شد. عامل‌ها شامل ده نژادگان مختلف و تیمار‌های آبیاری کامل (شاهد) و تنش شدید (قطع آبیاری) بودند. نتایج بررسی‌هانشان داد، پونسیروس به دلیل نشت یونی پایین­تر (85/31 درصد)، تجمع کمتر مالون­دآلدیید (4/134 نانومول بر گرم وزن خشک برگ) و در نتیجه پراکسیداسیون کمتر چربی (لیپید)ها و میزان کلسیم بالاتر (57 میلی‌گرم بر گرم وزن خشک برگ) نسبت به دیگر نژادگان‌ها متحمل به خشکی و راف‌لمون به دلیل تجمع بیشتر مالون­دآلدیید (9/356 نانومول بر گرم وزن خشک برگ) و در نتیجه پراکسیداسیون بیشتر چربی‌ها، نشت یونی بالا (43/69 درصد) و میزان پایین­تر کلسیم (63/32 میلی‌گرم بر گرم وزن خشک برگ) در مقایسه با دیگر نژادگان‌ها، حساس به خشکی هستند. همچنین نژادگان طبیعی شل‌محله به دلیل نشت یونی بالا (17/77 درصد) و تجمع پایین کربوهیدرات محلول کل (45/48 میلی‌گرم بر گرم وزن خشک برگ)، پس از راف‌لمون در رتبۀ بعدی حساسیت قرار داشت. بنابراین با توجه به مقایسۀ میانگین‌ها و همبستگی خوب نشت یونی با دورۀ بقا، می‌توان آن‌ را به‌عنوان نشانگر فیزیولوژی مناسب در مبحث تحمل به خشکی معرفی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of drought on citrus natural genotypes

نویسندگان [English]

  • Reza Fifaei 1
  • Reza Fotouhi Ghazvini 2
  • Javad Fatahi Moghadam 1
  • Masomeh Kiaeshkevarian 3
1 Assistant Professor, Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran
2 Professor, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
3 Researcher of Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran
چکیده [English]

Citrus tolerate low temperature and weak drainage. Growing citrus in warm regions, expose them to drought. This research was conducted to investigate drought effect on relative water content, ion leackage, malondialdehyde, soluble sugars, potassium and calcium nutrients in nucellar seedlings of citrus natural genotypeswith two susceptible and tolerant rootstocks in factorial test based on randomized completely design with three replications in glasshouse conditions. Factors included commercial Citrus genotypes and two level of irrigation (optimum irrigation and withholding irrigation). The results showed that Poncirus because of lower ion leakage (31.85 %), lower malondealdehyde accumulation (134.4 nm/gdw) and higher calcium content (57 mg/gdw) compared with other genotypes was more tolerant to drought. Rough lemon because of higher malondealdehyde accumulation (356.9 nm/gdw), high ion leakage (69.43 %) and lower calcium content (32.63 mg/gdw) compared with other genotypes, was susceptible to drought. Genotype of Shelmahalleh because of high ion leakage (77.17 %) and slight total soluble carbohydrate accumulation was susceptible to drought after Rough lemon. Therefore, we could consider ion leakage as a proper physiological marker for drought tolerance with regard to means comparison and its good correlation to survival time.

کلیدواژه‌ها [English]

  • ion leakage
  • leaf relative water content
  • Malondialdehyde
  • unknown genotype
  • Withhold irrigation
  1. Alizadeh, A., Alizadeh, V., Nassery, L. & Eivazi, A. (2011). Effect of drought stress on apple dwarf rootstocks. Technical Journal of Engineering and Applied Science, 3, 86-94.
  2. Allario, Th., Brumos, J., Colmenero-Flores, J. M., Pina, J. A., Navarro, L., Talon, M., Ollitrault, P. & Morillon, R. (2012). Tetraploid rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid productionpce. Plant, Cell and Environment, 36(4), 856-868.
  3. Arji, E., Arzani, K. & Ebrahimzadeh, H. (2003). Accumulation of proline and total soluble sugars in five cultivars olea europaea L. exposed to drought stress. Iran Biology Journal, 16 (4), 47-59. (in Farsi)
  4. Beniken, L.,  Omari, F. E.,  Dahan, R.,  Van Damme, P.,  Benkirane R. & Benyahia, H. (2013). Screening of ten citrus rootstocks to drought stress. In 1st International Plant Breeding congress, 19.
  5. Bollat, I., Dikilitas, M., Ercisli, S., Ikinci, A. & Tonkaz, T. (2014). The effect of water stress on some morphological, physiological and biochemical characteristics and bud success on apple and quince rootstocks. Scientific World Journal, Article ID 769732, 1-8.
  6. Cimo, G., Lo Bianco, R., Gonzalez, P., Bandaranayake, W., Etxeberria, E. & Syvertsen, J. P. (2013). Carbohydrate and Nutritional Responses to Stem Girdling and Drought Stress with Respect to Understanding Symptoms of huanglongbing in Citrus. Hortscience, 48(7), 920-928.
  7. De Campos, M. K. F., de Carvalho, K., de Souza, F. S., Marur, C. J., Pereira, L. F. P., Filho, J. C. B. & Vieira, L. G. E. (2011). Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environmental and Experimental Botany, 72, 242-250.
  8. Garcıa-Sancheza, F., Syvertsena, J. P., Gimenoc, V., Botlab, P. & Perez-Perezb, J. G. (2007). Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiologia Plantarum, 130, 532-542.
  9. Ghaderi, N., Talaei, E., Ebadi, E. & Lesani, H. (2010). Effect of drought stress and renewable irrigation on some of the physiological charachteristics in three Vitis cultivar included sahani, farokhi and white seedless. Iran Horticultural Science Journal, 41(2), 179-188. (in Farsi)
  10. Haghighatnia, H., Nadian, H. A. & Rejali, F. (2011). Effects of mycorrhizal colonization of growth, nutrients uptake and some other characteristics of Citrus Volkameriana rootstock under drought stress. World Applied Science Journal, 13(5), 1077-1084.
  11. Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives. Biochemistry and Biophysics, 125, 189-198.
  12. Javadi, T., Arzani, K. & Ebrahimzadeh, H. (2003). Investigation of soluble sugars and proline content in 9 genotypes pyrus serotna under drought stress. Iran Biology Journal, 17(4), 369-387. (in Farsi)
  13. Jimenez, S., Dridi, J., Gutierrez, D., Moret, D., Jrigoyen, J. J., Moreno, M. A. & Gogorcena, Y. (2013). Physiological, biochemical and molecular responses in four prunus rootstocks submitted to drought stress. Tree Physiology, 33(10), 1061-1075.
  14. Jones, H. G. (1993). Drought Tolerance and Water-Use Efficiency. In: J. A.C. Smith & H. Griffiths (Eds.), Water Deficits Plant Responses from Cell to Community (pp. 193-203). Bios Science Ltd. Oxford.
  15. Metheney, P. D., Ferguson, L., Goldhamer, D. A. & Dunai, J. (1994). Effects of irrigation on Manzanillo olive flowering and shoot growth. Acta Horticulturae, 356, 168-171.
  16. Mahajan, S. & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139-158.
  17. Morgan, J. M. (1984). Osmoregulation and water stress in higher plants. Annual Review Plant Physiology, 35, 299-319.
  18. Nasr-e-esfahani, A. & Golchin, N. (2008). Estimating of water use efficiency of farm crops in Esfahan, Gorgan and Gonbad regions. Planning Economic & rural Development Research Institute, pp. 25-34. (in Farsi)
  19. Rabiei, V., Talaei, A. R., Peterlonger, E., Ebadi, A. & Ahmadi, A. (2004). Effect of deficit irrigation on vitis fruit compounds in cultivar merlot at late season. Journal of Iran Agricultural Sciences, 34(4), 961-968. (in Farsi)
  20. Rodríguez-Gamir, J., Primo-Millo, E., Forner, J. B. & Forner-Giner, M. A. (2010). Citrus rootstock responses to water stress. Scientia Horticulturae, 126, 95-102.
  21. Rosban, M. R. (2009). Investigation of physiological mechanisms of drought tolerant in seedling rootstock of Pistacia. Doctora of science thesis, pp. 158-264. (in Farsi)
  22. Save, R., Biel, C., Domingo, R., Ruiz-Sanchez, M. C. & Torrecillas A. (1995). Some physiological and morphological characteristics of Citrus plants for drought resistance. Plant Science, 110, 167-172.
  23. Somogyi, M. (1952). Note on sugar determination. Journal of Biological and Biochemistry,195, 19-23.
  24. Wang, S., Liang, D., Li, C., Hao, Y., Ma, F. & Shu, H. (2011). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought tolerant and drought sensitive apple rootstocks. Plant Physiology and Biochemistry, 51, 81-89.
  25. Whitlow, T. H., Bassuk, N. L., Ranney, T. G. & Reichert, L. D. (1992). An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiology, 98, 198-205.
  26. Wu, Q. Sh., Zou, Y. N., Xia, R. X. & Wang, M. Y. (2007). Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies, 48, 147-154.
  27. Xie, S. X., Lu, X. P., Ni, Q. & Zhao, X. L. (2012). The effect of water stress on ABA, Jaand physiological characteristic of Citrus. In: XII International Citrus Congress, 125.
  28. Yazdani, N., Arzani, K. & Arji, E. (2007). Modulation of drought stress with Paclobutrazol application in two Olea cultivars (Blaidi and Meision). Iran Agricultural Science Journal, 38. (in Farsi)