تأثیر همزیستی قارچ قارچ‌ریشه بر ویژگی های رویشی، فیزیولوژیکی و بیوشیمیایی چهار جنس گراس سردسیری در شرایط تنش خشکی

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی سابق دکتری، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت

2 استادیار، دانشکدۀ علوم کشاورزی، دانشگاه گیلان، رشت

چکیده

به‌منظور ارزیابی اثرگذاری‌های سه گونۀ قارچ قارچ‌ریشه یا میکوریزا (clarum Glomus، Glomus fasiculatum و mosseae Glomus) و تنش­ خشکی (با سه سطح رطوبتی 80 ، 55 و 30 درصد ظرفیت زراعی) بر ویژگی­ گراس­های­ لولیوم چندساله (Lolium perenne)، پوآی چندساله (Poa pratensis)، فستوکای پابلند (Festuca aurandiancea) و اگروپیرون (Agropyron elongatum)، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در گلخانه با استفاده از گلدان‌های استوانه­ای­ انجام شد. نتایج نشان داد، بیشترین درصد پرگنه (کلنی)­سازی ریشه را گراس لولیوم چندساله با گونۀ موسه­آ و کمترین درصد را پوآی چندساله با گونۀ کلاروم داشتند. درصد پرگنه­سازی هر سه گونۀ قارچ با ریشۀ لولیوم چندساله و فستوکای پابلند در نتیجۀ تنش خشکی، کاهش ولی درصد پرگنه­سازی گونه­های کلاروم و فسیکولاتوم با ریشۀ اگروپیرون و پوآی چند­ساله افزایش یافت. قارچ­های فسیکولاتوم و موسه­آ، سبزینه (کلروفیل) و کارتنوئید برگ گراس­های همزیست با آن‌ها را در بالاترین سطح تنش، بیش از 38 درصد افزایش دادند. گراس­های همزیست با موسه­آ بیشترین محتوای نسبی آب برگ و کمترین نشت یونی و مالون­دی­آلدهید را نسبت به گراس­های همزیست با دیگر گونه­های قارچ داشتند. درمجموع قارچ‌ریشه توانست تأثیر سوء تنش خشکی بر چمن­ را کاهش دهد ولی تمایل به همزیستی و تأثیر گونه­های مختلف آن بر گراس­های تحت تنش متفاوت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of mycorrhiza fungi on morphological, physiological and biochemical characteristics of four cool Season grass genera under drought stress conditions

نویسندگان [English]

  • Hamed Ashraf 1
  • Hedayat Zakizadeh 2
  • Seyed Mohammad Reza Ehtesham 2
  • Mohammad Hossein Biglouei 2
1 Former Ph.D. Student, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assistant Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

In order to evaluate three species of mycorrhizal fungi (Glomus clarum, Glomus fasiculatum and Glomus mosseae) and drought stress (80, 55 and 30 percent of field capacity) on characteristics of grass genera, Lolium perenne, Poa pratensis, Festuca aurandiancea and Agropyron elongatum, a factorial experiment based on randomized complete block design was carried out in the greenhouse using a cylindrical pots. According to the results, Lolium showed the highest root colonization with G. mosseae while Poa showed the lowest colonization with G. clarum. Drought stress reduced the root colonization of Festuca and Lolium in all mycorrhizal treatments, but increased the root colonization of Agropyron and Poa with G. clarum and G. fasiculatum. At highest level of stress, G. fasiculatum and G. mosseae increased the chlorophyll and carotenoid contents of grass genera, more than 38 percent. Grasses symbiotic with G. mosseae showed the highest relative water content and lowest electrolyte leakage and malondialdehyde content compared to grasses symbiotic with other species of mycorrhizae. In general, mycorrhizal fungi could reduce the adverse effects of drought stress on grass characteristics, but the tendency to symbiosis and that’s influence on the grass genera under stress, were different.

کلیدواژه‌ها [English]

  • Agropyron
  • Festuca
  • Glomus
  • Lolium
  • Poa
  1. Ahmadi, A. & Baker, A. D. (2000). Stomatal and nonstomatal limitations of photosynthesis under water stress conditions in wheat plant. Iranian Journal of Agricultural Science, 31(4), 813-825. (in Farsi)
  2. Alcamo, J., Herichs, T. & Rosch, T. (2000). World water in 2025: Global modeling and scenario analysis for the world commission on water for the century. Center for Environmental Systems Research. Report A0002. University of Kassel, Germany.
  3. Alizadeh, A. (2004). Soil and plant water relations. Imam Reza University Press. Mashhad. (in Farsi)
  4. Aslani, Z., Hassani, A., Rasooli Sadaghiyani M., Sefidkon, F. & Barin, M. (2011). Effect of two fungi species of arbuscular mycorrhizal (Glomus mosseae and Glomus intraradices) on growth, chlorophyll contents and P concentration in Basil (Ocimum basilicumL.) under drought stress conditions.  Iranian Journal of Medicinal and Aromatic Plants, 27(3), 471-486. (in Farsi)
  5. Amiard, V., Bertrand, A. M., Billard, J. P., Huault, C., Keller, F. & Prudhomme, M. P. (2003). Fructans, but not the sucrosyl-galactosides, Raffinose and loliose, are affected by drought stress in perennial ryegrass. Journal Plant Physiology, 132, 2218-2229.
  6. Amiri, M. J. & Eslamian, S. S. (2010). Investigation of climate change in Iran. Journal of Environmental Science and Technology, 3, 208-216.
  7. Amiri Nasab, K., Zakizadeh, H., Ghasemnezhad, M. & Biglouei, H. (2015). The effect of drought preconditioning on increasing drought stress tolerance in two turfgrass creeping bentgrass (Agrostis Stolonifera cv. Palustris) and tall fescue (Festuca Arundinacea cv. Greystone). Journal of Crops Improvement, 16(3), 599-611. (in Farsi)
  8. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
  9. Arve, L. E., Torre, S., Olsen, J. E. & Tanino, K. K. (2011). Stomatal responses to drought stress and air humidity. In: Shanker A. (Ed.), Abiotic stress in plants - Mechanisms and adaptations. InTech Publication. pp. 267-280.
  10. Auge, R. M. (2001). Water relation, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.
  11. Banwarie, L., Kaushik, S. K. & Gautam, R. C. (1994) Effect of soil moisture regime, kaolin spray and phosphorus fertilizer on nodulation, P uptake and water use of lentil (Lense culinaris). Indian Journal of Agronomy, 39, 241-245.
  12. Barrs, H. D. & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15, 413-428.
  13. Blum, A. & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43-47.
  14. Butler, T. R. (2008). Physiological effects of drought on perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.). Lincoln University. MSc. Dissertation.
  15. Di, J. J. & Allen, E. B. (1991). Physiological responses of six wheatgrass cultivars to mycorrhizae. Journal of Range Management, 44, 336-341.
  16. Domiri Ganji, H., Babaei, S., Mataji, A. & Rashidi, F. (2011) Evaluation of the trend of changes in green Space of district 2 of Tehran by using aerial photographs and satellite data. Natural Resources, Science and Technology, 5(2), 13-24. (in Farsi)
  17. Douds, D. D. & Schenck, N. C. (1991). Germination and hyphal growth of vam fungi during and after storage in soil at five matric potentials. Soil Biology and Biochemistry, 23(2), 177-183.
  18. Esmaeelpour, B., Jalilv, P. & Hadian J. (2013). Effect of drought stress and mycorrhizal fungi on some morpho-physiological traits and performance of Summer Savory (Satureja hortensis L.).  Journal of Agroecology, 5(2), 169-177. (in Farsi)
  19. Estill, K., Delany, R. H., Smith, W. K. & Ditterline, R. L. (1991). Water relations and productivity of alfalfa leaf chlorophyll variants. Crop Science, 31, 1229-1233.
  20. Gazanchian, A., Hajheidari, M., Khosh Kholgh Sima, N. A. & Salkadeh, G. H. (2007). Proteom response of Elymus elongatum to sever water stress and recovery. Journal of Experimental Botany, 58, 291-300.
  21. Gemma, J. N., Koske, R. E., Roberts, E. M., Jackson, N. & De Antonis, K. M. (1997(. Mycorrhizal fungi improve drought resistance in creeping bentgrass. Journal of Turfgrass Science, 73, 15-29.
  22. Giovannetti, M. (2000). Spore Germination and Pre-Symbiotic Mycelial Growth. In Y. Kapulnik & D.D. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function (pp. 47-68). Dordrecht: Springer Netherlands.
  23. Goicoechea, N., Dolezal, K., Antolin, M. C., Strnad, M. & SanchezDiaz, M. (1995). Influence of mycorrhizae and rhizobium on cytokinin content in drought-stressed alfalfa. Journal of Experimental Botany, 46, 1543-1549. 
  24. Gollotte, A., van Tuinen, D. & Atkinson, D. (2004). Diversity of Arbuscular Mycorrhizal Fungi Colonising Roots of the Grass Species Agrostis capillaris and Lolium perenne in a Field Experiment. Mycorrhiza, 14(2), 111-117.
  25. Heath, R. L. & Parker, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stiochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.   
  26. Huang, B. & Fry, J. D. (2004). Applied turfgrass science and physiology. 1th Ed. John Wiley, New York. 320 p.
  27. Huang, B. & Fry, J. D. (2000). Turfgrass Evapotranspiration. Journal of Crop Production: Agricultural Management in Global Context, 2(2), 317-333.
  28. Jacobsen, I., Abbott, L. K. & Robson, A. (1992). External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trofoluim subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120, 371-380.
  29. Jinrong L., Xiaorong X., Jianxiong D., Jixiong S. & Xiaomin B. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass. Scientia Horticulturae, 115, 190-195.
  30. Kafi, M., Daneshvar Hakimi Meybodi, N., Nikbakht, A., Rejali, F. & Deneshkhah, M. (2013). Effect of humic acid and mycorrhiza fungi on some characteristics of “Speedy green” perennial ryegrass (Lolium perenne L.). Journal of Science and Technology of Greenhouse Culture, 4(13), 49-59. (in Farsi)
  31. Kafi, M., Borzouei, A., Salehi M., Kamandi, A., Masoumi, A. & Nabati, J. (2009). Environmental stress physiology in plants. Jihad-e-Daneshgahi Mashhad Press, Mashhad. 502p. (in Farsi)
  32. Kafi, M. & Kaviani, S. H. (2002). Establishment management and turf maintenance. Cultural & Artistic Institution Shaghayegh Rusta, Pp: 230. (in Farsi)
  33. Khazaei, H. & Kafi, M. (2003). The role of relative water content (RWC) and stomatal resistance to drought resistance in wheat and their relationship with grain yield under greenhouse and field. Journal of Agricultural Sciences and Technology, 16(2), 125 -115. (in Farsi)
  34. Khorshidi, M., Bicharanlou, B. & Bagheri, M. (2014). Elevated the tolerance of maize plants to temperature changes through symbiosis with three Species of Mycorrhiza. Sustainable Agriculture and Production science, 23(4.1), 187-200. (in Farsi)
  35. Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592.
  36. Molaahmad Nalousi, A., Hatamzadeh, A., Ghasemnezhad, M. & Biglouei, H. (2014). Effects of exogenous sodium nitroprusside on drought resistance of creeping bentgrass and tall fescue. Journal of Horticultural Science and Technology. 16(3), 427-438. (in Farsi)
  37. Mcgonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. (1990). A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495-501.
  38. Munné-Bosch, S. & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203-216.
  39. Pelletier, S. & Dionne, J. (2004). Inoculation rate of arbuscular-mycorrhizal fungi Glomus intraradices and Glomus etunicatum affects establishment of landscape turf with no irrigation or fertilizer inputs. Crop Science, 44(1), 335-338.
  40. Philips, J. M. & Hayman, D. S. (1970). Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.
  41. Price, A. H. & Hendry, G. A. F. (1991). Iron-catalyzed oxygen radical formation and its possible contribution to drought in nine native grasses and three cereals. Plant, Cell and Environment, 14, 477-484.
  42. Rahmatzadeh, S., Khara, J. & Kazemitabar, S. K. (2013). Effect of arbuscular mycorrhizal fungi on growth improvement and biochemical factors of regenerated Catharanthus roseus L. plants under tryptophan treatment during acclimatization process. Iranian Journal of Plant Biology, 5(16), 27-40. (in Farsi)
  43. Rejali, F., Mardoukhi, B. & Malakouti, M. (2011). The effect of mycorrhizal symbiosis on WUE, proline accumulation and nutrient uptake of wheat in saline conditions. Water Research in Agriculture, 24 (2), 111-122. (in Farsi)
  44. Saedmoocheshi, A. & Heidari, B. (2011). Alleviation of drought damages on chlorophyll content and biological yield in wheat cultivars by means of mycorrhizal symbiosis. The fifth national conference on new ideas in agriculture. Islamic Azad University, Isfahan (Khorasgan) Branch. (in Farsi)
  45. Salehi, M., Koochaki, A. & Nassiri Mahalati, M. (2003). Leaf nitrogen and spad reading as indicator for drought stress in wheat. Journal of Iranian Field Crop Research, 1(2), 199-204. (in Farsi)
  46. Schonfeld, M. A., Johnson, R. C., Carver, B. F. & Mornhinweg, D. W. (1988) Water relations in winter wheat as drought resistance indicators. Crop Sciences, 28, 526-531.
  47. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 26.
  48. Sircelj, H., Batic, F. & Stampar, F. (1999). Effects of drought stress on pigment, ascorbic acid and free amino acids content in leaves of two apple tree cultivars. Phyton (Austria), 39, 97-100.
  49. Smith, S. E. & Read, D. J. (2008). Mycorrhizal symbiosis. Academic Press, London.
  50. Soleymani, F. & Pirzad, A. (2015). The effect of mycorrhizal fungi on malondialdehyde concentration and some metabolic processes in hyssop (Hyssopus officinalis) under water deficit stress. Iranian Journal of Plant Biology, 7, 15-26. (in Farsi)
  51. Song, H. (2005). Effects of VAM on host plant in the condition of drought stress and its Mechanisms. Electronic Journal of Biology, 1(3), 44-48.
  52. Tatari, M., Fotouhi Ghazvini, R., Etemadi, N., Ahadi, A. M. & Mousavi, A. (2013). A study of morphological, physiological and biochemical responses of Poa pratensis L. (Kentucky bluegrass) cv. ’Barimpala‘to drought stress conditions. Iranian Journal of Horticultural Science, 44(3), 329-340. (in Farsi)
  53. Tehranifar, A., Selahvarzi, Y., Gazanchian, A. & Arooei, H. (2009). Drought resistance mechanisms of native and commercial turfgrasses under drought stress: II. Shoot responses. Journal of Horticulture Science, 23(1), 1-9. (in Farsi)
  54. Turkan, I., Bor, M., Ozdemir, F. & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought - tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168:223-231.
  55. Valentovic, P., Luxova, M., Kolarovic, L. & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environment, 52(4), 186-191.
  56. Wu, Q. S., Srivastava, A. K. & Zou, Y. N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 164, 77-87.
  57. Wu, Q. S. & Zou, Y. N. (2009). Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Soil Environmental and Atmospheric Sciences, 55(10), 436-442.
  58. Zhu, X., Song, F. & Liu, S. (2001). Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food, Agriculture and Environment, 9(2), 583-587.