تأثیر محلول‌پاشی کودهای پتاسیمی و اسید هیومیک بر رنگیزه‌ها و فعالیت پاداکسندگی انگور رقم ’بیدانۀ سفید‘

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی‌ارشد تولیدات گیاهی، تولید محصولات باغی، دانشکدۀ کشاورزی، دانشگاه ملایر

2 استادیار، گروه فضای سبز، دانشکدۀ کشاورزی، دانشگاه ملایر

چکیده

تولید انگور با کیفیت و دارای بافت محکم و ویژگی ماندگاری بالای میوه اهمیت زیادی دارد. هدف از انجام این پژوهش، تأثیر کاربرد برگی غلظت‌های مختلف (0، 1000 و 2000 میلی‌گرم در لیتر) سولفات پتاسیم، نانو‌کلات پتاسیم و اسید هیومیک بر رنگیزه‌ها و فعالیت پاداکسندگی (آنتی‌اکسیدانی) انگور ’بیدانۀ سفید‘ در راستای بهبود کیفیت در قالب طرح کامل تصادفی در یک باغ تجاری انگور طی سال‌های 1395-1393 بود. بدین منظور تیمارهای محلول‌پاشی در سه نوبت شامل یک مرحله پیش از گلدهی، دو هفته پس از تشکیل میوه و یک ماه پس از مرحلۀ دوم انجام شد. بنا بر نتایج به‌دست‌آمده تیمار سولفات پتاسیم با غلظت 2000 میلی‌گرم در لیتر موجب افزایش پتاسیم برگ، تیمار ‌نانو کلات پتاسیم با غلظت 1000 میلی‌گرم در لیتر موجب افزایش سبزینۀ (کلروفیل) کل و آنتوسیانین‌های برگ و اسید هیومیک با غلظت 1000 میلی‌گرم در لیتر موجب افزایش غلظت فنول‌های برگ و فلاونوئیدهای برگ نسبت به شاهد شد. تیمار ‌نانوکلات پتاسیم با غلظت 1000 میلی‌گرم در لیتر موجب افزایش آنتوسیانین‌های میوه و فعالیت آنزیم سوپراکسید دیسموتاز میوه، همچنین تیمار نانوکلات پتاسیم با غلظت 2000 میلی‌گرم در لیتر موجب افزایش غلظت پتاسیم میوه و فعالیت آنزیم آسکوربات پراکسیداز میوه، سولفات پتاسیم با غلظت 1000 میلی‌گرم در لیتر موجب افزایش غلظت فنول‌های میوه، پروتئین میوه و فعالیت آنزیم کاتالاز میوه و اسید هیومیک با غلظت 1000 میلی‌گرم در لیتر موجب افزایش فلاونوئیدهای میوه و فعالیت آنزیم پراکسیداز میوه نسبت به شاهد شد. نتایج این بررسی تأییدکنندۀ تأثیر چشمگیر تیمار‌ها، به‌ویژه نانوکلات پتاسیم و سولفات پتاسیم با غلظت 1000 میلی‌گرم در لیتر بر افزایش فعالیت آنزیم‌ها بوده که در نتیجه آن موجب استحکام غشا و بافت میوه و در نتیجه افزایش کیفیت و ماندگاری بهتر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of potassium fertilizers and Humic acid on the Pigments and activity of antioxidants in grape 'Bidaneh Sefid'

نویسندگان [English]

  • Nayereh Zangeneh 1
  • Mousa Rasouli 2
1 Former M. Sc. Student, Faculty of Agriculture, Malayer University, Iran
2 Assistnat Professor, Faculty of Agriculture, Malayer University, Iran
چکیده [English]

Grape production with high quality, firm texture and suitable shelf life of the fruit is very important. The purpose of this study, the effect of foliar application of different concentrations (0, 1000 and 2000 mg/liter) of potassium sulfate, potassium nano chelated fertilizer and humic acid on the pigments and antioxidant activity in grape variety 'Bidaneh Sefid' were studied in order to improve the quality of grapes in a completely randomized design in a commercial orchard during 2013-2015. Foliar applications were employed three times, including one before flowering, at fruit set, two weeks after fruit set and one month after the second stage was carried out. Based on the results, potassium sulfate at a concentration of 2000 mg /liter increased the potassium concentrations of leaves, potassium nano chelated fertilizer at a concentration of 1000 mg/liter increased chlorophyll in leaves, anthocyanins in leaf and humic acid with a concentration of 1000 mg /liter increased the phenol concentration, and flavonoid in leaf compared to control. potassium nano chelated fertilizer at a concentration of 1000 mg/liter increased anthocyanins in fruit and superoxide dismutase and also, treatment of potassium nano chelated fertilizer at a concentration of 2000 mg/liter increased the potassium and activity of the enzyme ascorbate, potassium sulfate. Concentration of 1000 mg /liter potassium nano increased the phenol concentrations in fruit, protein and catalase activity. Humic acid at concentration of 1000 mg /liter increased the phenol concentration in leaf, flavonoids in fruit and peroxidase activity compared to control. Results of this study, confirmed a significant effect of treatments, especially potassium nano chelated fertilizer and potassium sulfate at a concentration of 1000 mg/liter on increased enzyme activity. As a result, it strengthens membranes and tissues and thus increased the quality of the fruit.

کلیدواژه‌ها [English]

  • Chlorophyll
  • enzaym
  • phenolic compounds
  • potassium nano chelated
Abdel-Shafey, H. I., Hegemann, W. & Teiner, A. (1994(. Digestion with concentrated HNO3 and H2O2. Environ ManageHealth, 5, 21-24.
Agudelo-Romero, p., Ali, k., Choi, Y., Sousa, L., Verpoorte, R., Tiburcio, A. & Fortes, A. (2014). Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Plant Physiology and Biochemistry, 74, 141-155.
Ameri, A. & Tehranifar, A. (2012). Effect of humic acid on nutrient uptake and physiological characteristic. Fragaria ananassa var Camarosa. Biology Environmental Science, 6, 77-79.
Amiri, R., Golvi, M., Ghanbari, A. & Ramroudi, D. (2014). The effect of humic acid on the concentration of some nutrients in the garden cress root (Lepidium sativum) under the lead. First National Congress of Biology and Natural Sciences Iran. http://www.civilica.com/Paper-BSCONF01- BSCONF01_180.html. (in Farsi)
Anaraki, B., Ghasem nejhad, M. & Mighani, H. (2016). The effect of soil and foliar feeding of humic acid on quantitative and qualitative characteristics of pomegranate fruits Malas Saveh. Journal of Agricultural Science and Sustainable Production, 62(3).
Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23,112-121.
Arshad, M., Gregorian, V., Mostofi, Y. & Khaliq, A. (2006). The effect of foliar application of nitrogen and potassium on quantitative and qualitative characteristics and physiological factors affecting the fruiting cultivar 'Sultan'. Journal of Horticultural Science and Technology, 7(3), 135-146 .(in Farsi)
Bahrami, S., Soleimani, A. & Habibi, F. (2015). The effect of humic acid on the mineral composition leaves, yield and fruit quality apple variety 'Granny Smith' (Malus domestica L. cv. GrannySmith). Journal of Crops, 17(2), 529-517. (in Farsi)
Bar-Akiva, A. (1975). Effect of potassium nutrition on fruit spilitting in Valencia orang. Journal of Science Horticultural, 50, 85-89.
Baryla, A., Laborde, C., Montillet, J. L., Triantaphylides, C. & Chagvardieff, P. (2000). Evaluation of lipid peroxidation as a toxicity bioassay for plant exposed to copper. Environmental Pollution, 109, 131-135.
Benvenuti, S., Pellati, F., Melegari, M. & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69, 164-169.
Bergmeyer, H. U., Gawehn, K. & Grassl, M. (1974). In Methods of Enzymatic Analysis (Bergmeyer, H.U. ED), 1(2), 473-474.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Bravdo, B. A., Possinghaam, J. V. & Neilen, G. H. (2000). Effect of mineral and salinity on grape production and wine quality. Acta Horticulturae, 512, 23-30.
Chen, J., Li, Z., Maiwulanjiang, M., Zhang, W. L., Zhan, J. Y. X. & Lam, C. T. W. (2013). Chemical and biological assessment of Ziziphus jujuba fruits from China: Different geographical sources and developmental stages. Journal of Agricultural and Food Chemistry, 61(30), 7315-7324.
Chinnamuthu, C. R. & Boopathi, M. (2009). Nanotechnology and Agroecosystem. Madras Agricultural Journal, 96, 17-31.
de Santiago, A., Lose, M., Carmona, E. & Delgado, A. (2008). Humic substances increase the effectiveness of iron sulfate and vivianite preventing iron chlorosis in white lupin. Biology and Fertility of Soils, 44, 875-883.
Delgado, R., Matín, P., Alamo, M. & González, M. R. (2004). Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilization rates. Journal of Science of Food and Agriculture, 84, 623-630
Esfandiari, E., Shakiba, M. R., Mahboob, S., Alyari, H. & Toorchi, M. (2007). Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Journal of Food, Agriculture and Environment, 5, 149- 153.
Faniadis, D., Drogoudi, P. D. & Vasilakakis, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae.125, 301 -304.
Ferancis, Fj. (1989). Food colorants: anthocyanin crit rev. Food Science and Nutrition, 28(4), 273-314.
Giannopolitis, C. N. & Ries, S. K. (1977). Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59, 315-318.
Graham, S. (2003).Nanotech: It’s not easy being green. Scientific American. Coms nanotechnology chnnel, http://www.Sciam .com/nanotech.
Hadad, R. & Kamangar, A. (2015). The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.). Leaves. Iranian Journal of Genetics and Plant Breeding, 4(2).
Hernandez-Jimenez, A., Gomez-Plaza, E., Martinez-Cutillas, A. & Kennedy, J. A. (2009). Grape skin and seedproanthocyanidins from Monastrell x Syrah grapes. Journal of Agriculture and Food Chemistry, 57, 10798-10803.
Herzog, V. & Fahimi, H. D. (1973). Determination of the activity of peroxidase. Analytical Biochemistry, 55, 554-562.
Kafi, M., Zand, A., Kamkar, B., Sharifi, H. & Gholdani, M. (2002). Plant physiology, University of Mashhad. 379 pages. (in Farsi)
Karakut, Y., Unlu, H. & Pedem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Plant Soil Science, 59(3), 233-237.
Karimi, R. (2014). Effects of nutrition and abscisic acid on the tolerance to cold in the grapes. Ph.D. Thesis. Bu Ali Sina University. (in Farsi)
Karimi, R., Ershadi, A. & Esna ashari, M. (2014). The Effect of foliar application late season with nitrogen and potassium on cold tolerance dormant buds of grapes "Bidane Sefid". Journal of Horticultural Science and Technology, 15(3), 434-419. (in Farsi)
Keller, M. (2010). The Science of Grapevines: Anatomy and Physiology. Burlington, MA: Academic Press.400 p.
Khold-e-barin, B. & Islamzadeh, T. (2005). Mineral nutrition of higher plants. Shiraz University Press, PP: 495.
Krizek, D. T., Kramer, G. F., Upadyaya, A. & Mirecki, R. M. (1993). UV-B response of cucumber seedling grown under metal halide and high pressure sodium/deluxe lamps, Journal of Physiologia Plantarum, 88, 350-358.
Michalak A. (2006). Phenol compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523-530.
Mittler, R., Vanderauwera, S., Gollery, M. & Breusegem, F. V. (2004). Reactive oxygen gene network of plants, Trends in Plant Science, 9(10), 490-498.
Mullera, V., Lankesa, C., Zimmermannb, B. F., Nogaa. G. & Hunschea, M. (2013). Centelloside accumulation in leaves of Centella asiaticais determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium, Journal of Plant Physiology, 170, 1165-1175.
Naderi, M. R. & Danesh-Shahraki, A. (2013). Nanofertilizer and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences, 5(19), 2229-2232.
Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant andCell Physiology, 22, 867-880.
Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D. & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany. 53(372), 1237-1247.
Pozeshi, R., Zabihi, H., Ramezanimoghadam, M., Rajabzadeh, M. & Mokhtari, A. (2012). The effect of foliar application of zinc, humic acid and acetic acid on yield, yield components and concentrations of the cultivar 'Peykani'. Agricultural Science and Technology, 25(3), 360-351. (in Farsi)
Raad, M. T., Balaket, A. & Mohson Salman, A. (2014). Effect of humic acid and water quality on peroxidase and catalase enzymes activity in leaves of data palms c.v barhee. Global Journal of Bio- Science and Biotechnology, 3(4), 402-405.
Rasouli, M., Khodabakhsh zadeh, S., Ahmadi Ghre Gilli, Y. & Afrozi, K. H. (2013). Application of nanofertilizer effects on optimal production of agricultural products (Case Study: The effect of Iron nano chelat on grape production and horticultural crops). The first national nanotechnology conference on the charter and applications of. Hegmataneh environmental assessment. 15 March. Hamedan. Iran. civilica.com/Paper-NANOO01-NANOO01_033.html. (in Farsi)
Restrepo-Diaz, H., Benlloch, M. & Fernández-Escobar, R. (2008). Plant water stress and K starvation reduce absorption of foliar applied K by olive leaves. Scientia Horticulturae, 116, 409-413.
Sabzevari, S. & Khazaii, H. R. (2008). Effect of foliar application of humic acid levels on growth characteristics and yield of (Tritcum asetivum L.) wheat Pishtaz. Journal of Agricultural Ecology, 1(2), 63-5. (in Farsi)
Sanchez Sanchez, A., Sanchez Andreu, J., Juarez, M., Jorda, J. & Bermudez, D. (2006). Imporvement of iron uptake in table grape by addition of humic substancecs. Journal of Plant Nutrition, 29(2), 259-272.
Sarikhani, H. & Pouya, M. (2014). Foliar application of potassium sulpHate enhances the cold-hardiness of grapevine (Vitis vinifera L.). Journal of Horticultural Science & Biotechnology, 89(2), 141-146.
Seevers, P. M. & Daly, J. M. (1970). Studies on wheat stem rust resistance control at sr6 locus. 1- The role of phenolic of stem rust and wheat containing resistance genes Sr5, Sr6, Sr8, Sr22. Canadian Journal of Botany, 57, 324-331.
Shehata, S. A., Gharib, A. A., El-Mogy, M. M. & Abdel-Gawad KFand Shalaby, E. A. (2011). Influence of compost, amino and humic acids on the growth, yield and chemical parameters of strawberries. Journal of Medicinal Plants Research, 5, 2304-2308.
Singh, B. (2002). Effect of macro and micro nutrient spray on fruit yield and quality of grape (Vitis vinifera L. cv. Perlette). Acta Horticulture, 594, 197-202.
Skorzynska-Polit, E., Drazkiewicz, M., Wianowska, D., Maksymiec, W., Dawidowicz, A.L. & Tukiendorf, A. (2004). The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiologiae Plantarum, 26(3), 247- 253.
Teisseire, H. & Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science, 153, 65-72.
Thaipong, K., Boonprakob, U., Crosby, K., Zevallosc, L. C. & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675.
Valamoti, SM., Samuel, D., Bayram, M. & Marinova, E. (2008). Prehistoric cereal grain treatment in Greece and Bulgaria: experimental cereal processing and charring to interpret archaeobotanical remains. Vegetation History and Archaeobotany, 17(1), 265-276.
Wagner, G.J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplast. Plant Physiology, 64, 88-93.
Yamdagni, R. & Jindal, P. C. (1979). Effect of different levels of nitrogen. Phosphorus and potash on yield and qulity of sharbati cultivar of peach (Prunus persica Batch). Progressive Horticulture, 10(4), 41-44.
Zareii, A., Gavadi, T., Ghaderi, N. & Davari, M. (2013). The effect of foliar potassium sulfate on the total acidity, total soluble solids, carbohydrates antioxidant activity of grape varieties 'Rashe' (Vitis vinifera cv.rashe) Congress of Kurdistan University of Agricultural research findings. (in Farsi)
Zhao, X., Carey, E., Young, J. E., Wang, W. & Iwamoto, T. (2007). Influences of organic fertilization, high tunnel environment, and postharvest storage on phenol compounds in lettuce. Journal of Science Horticulture, 42, 71-76.