تأثیر سیلیکات پتاسیم بر کاهش تجمع بُر و آسیب‌های اکسایشی در انگور بیدانۀ سفید در شرایط تنش سمیت بُر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه ارومیه

2 استادیار گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه ارومیه

3 دانشیار گروه علوم خاک، دانشکدۀ کشاورزی، دانشگاه ارومیه

چکیده

تنش ناشی از سمیت بُر از مهم­ترین اختلال‌ها در نواحی خشک و نیمه‌خشک به شمار می‌آید. تیمار سیلیسیم یکی از روش‌های افزایش مقاومت گیاهان به تنش­های غیرزنده است. برای ارزیابی تأثیر سیلیسیم بر کاهش سمیت بُر در انگور بیدانۀ سفید، آزمایشی با سه سطح بُر (2/0، 15 و 30 میلی­گرم در لیتر) و سه سطح سیلیکات پتاسیم (0، 50 و 100 میلی­گرم در لیتر) به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار به اجرا درآمد. سه ماه پس از اعمال تیمارها، میزان تجمع بُر، محتوای نسبی آب برگ، نشت یونی، پرولین، مالون دی آلدهید، قند و پروتئین محلول و فعالیت آنزیم گایاکول پراکسیداز اندازه‌گیری شد. نتایج نشان داد، با افزایش غلظت بُر در محلول غذایی، میزان تجمع بُر، نشت یونی، محتوای پرولین، مالون دی آلدهید و پروتئین محلول برگ افزایش و محتوای نسبی آب برگ و فعالیت آنزیم گایاکول پراکسیداز کاهش یافت. کاربرد سیلیکات پتاسیم به‌طور معنی­داری میزان تجمع بُر، مالون دی آلدهید و نشت یونی در برگ را کاهش و فعالیت آنزیم گایاکول پراکسیداز و محتوای نسبی آب برگ را افزایش داد. تیمارها تأثیر معنی­داری بر محتوای قندهای محلول نداشتند. در تنش 30 میلی‌گرم در لیتر بُر، با کاربرد 100 میلی­گرم در لیتر سیلیکات پتاسیم میزان تجمع بُر 33 میلی­گرم به ازای هر کیلوگرم وزن خشک برگ کاهش یافت. نتایج نشان داد، تیمار سیلیکات پتاسیم با کاهش تجمع بُر در برگ­ها، تنش‌های اکسایشی (اکسیداتیو) ناشی از سمیت بُر را در نهال‌های انگور بیدانۀ سفید تعدیل می­ کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of potassium silicate on reduction of boron accumulation and oxidative damages in grape (Vitis vinifera cv. ‘Bidaneh Sefid’) under boron toxicity stress

نویسندگان [English]

  • Somayeh Nezamdoost 1
  • Alireza Farokhzad 2
  • Mir Hassan Rasouli-Sadaghiani 3
1 Former M. Sc. Student, Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Associate Professor, Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Stress induced by boron toxicity is one of the main problems in the arid and semi-arid area. One of the methods for increasing plant resistance to abiotic stresses is silicon treatment. In order to study the effect of silicon on boron toxicity reduction in ‘Bidaneh Sefid’ grape saplings, an experiment was conducted with three concentrations of boron (0.2, 15 and 30 mg/l) and potassium silicate (0, 50 and 100 mg/l) in factorial arrangement based on randomized complete block design with three replications. Three months after the treatments, accumulation of boron, relative water content, ion leakage, proline, malondialdehyde, soluble sugars, soluble protein and guaiacol peroxidase enzyme activity was measured. The results showed that accumulation of boron, ion leakage, proline and malondialdehyde content, soluble sugars and total soluble protein of leaves increased with increasing boron concentration but relative water content and guaiacol peroxidase enzyme activity decreased. Potassium silicate application significantly reduced the accumulation of boron, malondialdehyde content and ion leakage in leaves and increased guaiacol peroxidase enzyme activity and leaf relative water content. None of the treatments had a significant effect on soluble sugar content. Boron accumulation in 30 ppm boron treatment was decreased 33 mg per kilograms dry weight by 100 mg/l potassium silicate application compared to the same treatment with zero ppm potassium silicate concentration. The results showed that grape saplings treatment with 100 mg/l potassium silicate alleviates oxidative damage caused by boron toxicity by reducing boron accumulation in leaves.

کلیدواژه‌ها [English]

  • Biochemical Characteristics
  • boron stress
  • hydroponic culture
  • ion leakage
  • soluble protein
Ahmad, M., Hassen, F., Qadeer, U. & Aslam, A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal Agriculture Research, 6(3), 594-607.
AL-Aghabary, K., Zhujun, Z. & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Plant Nutrition, 27, 2101-2115.
Apostol, K. G. & Zwiazek, J. J. (2004). Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environmental and Experimental of Botany, 51, 145- 153.
Ardic, M., Sekmen, A. H., Tokur, S., Ozdemir, F. & Turkan, I. (2009). Antioxidant response of chickpea plants subjected to boron toxicity. Plant Biology, 11, 328-338.
Ayvaz, M., Kemal Avci, M., Yamaner, C., Koyuncu, M., Guven, A. & Fagerstedt, K. (2013). Does excess boron affect the malondialdehyde levels of potato cultivars? EurAsian Journal of BioSciences, 7, 47-53.
Balakhnina, T. & Borkowska, B. (2013). Effects of silicon on plant resistance to environmental stresses. International Agrophysics, 27,225-232.
Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein. Analytical Biochemistry, 72, 248-254.
Cervilla, L. M., Blasco, B., Rìos, J. J., Romero, L. & Ruiz, J. M. (2007). Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Annals of Botany, 100, 747-756.
Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A. & Sanchez-Rodriguez, E. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany, http://dx.doi.org/10.1155/2012/726206, 17 pages.
Ding, Y. F., Liang, Y. C., Zhu, J. & Li, Z. J. (2007). Effects of silicon on plant growth, photosynthetic parameters and soluble sugar content in leaves of wheat under drought stress. Journal of Plant Nutrition and Fertilizer, 13(3), 471-478.
El-Feky, S. S., El-Shintinawy, F. A. & Shaker, E. M. (2014). Role of cacl2 and salicylic acid on        metabolic activities and productivity of boron stressed barley (Hordeum vulgare L.). International Journal of Current Microbiology and Applied Scinces, 3(2), 368-380.
Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641-664.
Eraslan, F., Inal, A., Gunes, A. & Alpaslan, M. (2007). Boron toxicity alters nitrite reductase activity, prolin accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30, 981-994.
Eraslan, F., Inal, A., Pilbeam, D. J. & Gunes, A. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. CV. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55, 207-219.
Esmaeili, M. & Rahmani, M. (2012). Principles of proper nutrition grape vines. Agriculture Organization of Qazvin Province, 1-39. (in Farsi)
Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Eraslan, F. & Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, 51, 687-695.
Gunes, A., Inala, A., Bagcia, E. G., Cobana, S. & Pilbeam, D. J. (2007). Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Scientia Horticulture, 113, 113-119.
Guntzer, F., Keller, C. & Meunier, J. D. (2012). Benefits of plant silicon for crops. Agronomy for Sustainable Development, 32, 201-213.
Haghighi, M. & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulture, 161, 111-117.
Hajebi, A. H. & Heidari Sharif Abad, H. (2005). Investigation of the effect of drought on growth and nodulation of three species of clover. Pajouhesh and Sazandegi, 66, 13-22.
Heath, R. L. & Packer, L. (1968). Photoperoxidation in Isolated Chloroplasts. Archives Biochemistry Biophysics, 125, 850-857.
Herrera-Rodriguez, M. B., Gonzalez-Fontes, A., Rexach, J., Camacho- Cristobal, J. J., M. Maldonado, J. & Navarro- Gochicoa, M. T. (2010). Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
Irigoyen, J. J., Emerich, D. W. & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in modulated alfalfa (Medicago sativa) plants. Plant Physiology, 84, 55-60.
Karabal, E., Yucel, M. & Huseyin, A. O. (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164, 925-933.
Kaya, C., Tuna, A. L., Dikilitas, M., Ashraf, M., Koskeroglu, S. & Guneri, M. (2009). Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae, 121, 284-288.
Liamas, A., Ullrich, C. I. & Sanz, A.  (2000). Cadmium effects on transmembrance electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil, 219, 21-28.
Liang, Y. C., Sun, W., Zhu, Y. G. & Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stress in higher plants: a review. Environmental Pollution, 147, 422-428.
Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice cultivar differing in salinity resistance. Annals of Botany, 78, 389-398.
Ma, J. F. & Yamaji, N. (2006) Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11, 392-397.
Mittler, R., Vanderauwera, S., Gollery, M. & Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498.
Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G. & Therios, I. (2006). Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environmental and Experimental Botany, 56, 54-62.
Oraei, M., Tabatabaei, S. J., Fallahi, E. & Imani, A. & Seyyedlar fatemi, S.  (2012). The effects of boron stress on growth, physiological characteristics and the distribution of boron in scion-rootstock combinations of almond (Prunus dulcis Mill.). Journal of Horticultural Sciences, 26, 440-447. (in Farsi)
Papadakis, E. I., Dimassi, K. N., Bosabalidis, A. M., Therios, I. N., Patakas, A. & Giannakoula, A. (2004). Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Science, 166, 539- 547.
Ranjbarani, E., Sarikhani, H., Wakana, A. & Bakhshi, D. (2011). Effect of salicylic acid on storage life and postharvest quality of grape (Vitis vinifera L. cv. Bidaneh Sefid). Journal of the Faculty of Agriculture Kyushu University, 56 (1), 263-269.
Paquin, R. & Lechasseur, P. (1979). Observations sur une method de dosage de la proline libre dans les extraits de plants. Canadian Journal of Botany, 57, 1851-1854.
Ranjan, R., Bohra, S. P. & Jeet, A. M. (2001). Book of plant senescence. Jodhpur, Agrobios New York. pp. 18-42.
Romero-Aranda, M. R., Jurado, O. & Cuartero, J. (2006). Alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Plant Physiology, 163, 847-855.
Rostami, H. Tabatabai, S. J., Zare Nahandi, F. & Hajiloo, J. (2013). Concentrations of boron (B) on the growth and physiological characteristics of olives. Journal of Horticultural Science, 27, 26-18. (in Farsi)
Sandalio, L. M., Dalurzo, H. C., Gomez, M., Romero-Puertas, M. C.  & Del Río, L. A. (2001). Cadmium- induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52 (364), 2115-2126.
Seyyedlar Fatemi, L., Tabatabai, S. J., & Fallahi, A. (2009). Effect of silicon on growth and yield of strawberry under salt stress conditions. Journal of Horticultural Science (Agricultural Science and Technology), 23, 95-88. (in Farsi)
Shariat, A., Osarea, M. H. & Zarea, A. (2010). Effects of cadmium on some physiological parameters in Eucalyptus occidentalis. Journal of Science and Technology of Agriculture and Natural Resources, Soil and Water Sciences. 53, 145-153. (in Farsi)
Sheng, O., Song, S. W., Chen, Y. J., Peng, S. A. & Deng, X. X. (2008). Effects of exogenous B supply on growth. B accumulation and distribution of two navel orange cultivars. Trees, 23, 59-68.
Shi, G., Cai, Q., Liu, C. & Wu, L. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation, 61, 45-52.
Shi, X. H., Zhang, C. C., Wang, H. & Zhang, F. S. (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 272, 53-60.
Soylemezoglu, G., Demir, K., Inal, A. & Gunes, A. (2009). Effect of silicon on antioxidant and stomatal response of two grapevine rootstock grown in boron toxic –salin soil. Scientia Horticulturae, 123, 240-246.
Tabatabaei, S. J. (2009). Principles of Plant Mineral Nutrition. Kharazmi. Tabriz. Iran. (In Farsi)
Turner, N. C. (1981). Further progress in crop water relations. Advances in Agronomy, 58, 293-338.
Updhyaya, A., Sankhla, D., Davis, T. D., Sankhla, N. & Smidth, B. N. (1985). Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Journal of Plant Physiology, 121, 453-461.
Verma, S. & Dubeym, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice, Biologia Plantarum, 1, 117-123.
Wang, J. Z., Tao, S. T., Qi, K. J., Wu, J. & Wu, H. Q. (2011). Changes in photosynthetic properties and antioxidative system of pear leaves to boron toxicity. African Journal of Biotecnology, 10, 19693-19700.
Wolf, B. (1974). Improvement in the azomethine-H method for the determination of boron. Communication in Soil Science & Plant Analysis, 5, 39-44.
Yermiyahu, U. & Ben-Gal, A. (2006). Boron toxicity in grapevine. Horticultural Science, 41(7), 1698-1703.
Zhu, Z. J., Wei, G. Q., Li, J., Qian, Q. Q. & Yu, J. Q. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Journal Plant Science, 167, 527-533.