بررسی پایداری ژنتیک گیاهچه‌های حاصل از کشت بافت برخی از رقم‌های خرما با استفاده از نشانگرهای ریزماهواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکدۀ کشاورزی، دانشگاه شهرکرد

2 استادیار، دانشکدۀ کشاورزی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، خوزستان

3 دانشجوی سابق دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

4 دانشجوی سابق کارشناسی ارشد، دانشکدۀ کشاورزی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، خوزستان

5 استادیار، پژوهشکدۀ زیست‌فناوری و مهندسی زیستی، دانشگاه صنعتی اصفهان

چکیده

خرما با نام علمی Phoenix dactylifera گیاهی تک‌لپه، دو پایه و با عمر طولانی و چندساله است که اهمیت اقتصادی بالایی در کشور ایران دارد. افزایش درختان آن با استفاده از پاجوش کند و هزینه‌بر است، به همین دلیل امروزه از روش­های افزایش دیگری از جمله کشت بافت استفاده می­شود. روش کشت بافت منجر به تنوع همسانۀ بدنی (سوماکلونال) می­شود که ناشی از تنوع اپی­ژنتیک غیر قابل وراثتی است که در نتیجۀ تغییرپذیری پدیدگانی (فنوتیپی) موقت به وجود می­آید. لذا نبود ثبات ژنتیک نهال­های کشت بافتی باعث تمایل نداشتن نخل­داران در استفاده از این نوع نهال­ها است. در این پژوهش بررسی ثبات ژنتیک، ده نژادگان (ژنوتیپ) از خرمای پاجوشی و کشت بافتی ناشی از اندام­زائی مستقیم در رقم‌های ایرانی با استفاده از بیست جفت آغازگر ریز ماهواره­ای ارزیابی شد. نتایج نشان داد، از بین جفت آغازگرهای مورد استفاده، چهار آغازگر mPdCIR044، PDAAG1023، DP172 و PDAAG1025 قادر به تمایز بین رقم‌ها و بیان چندشکلی بودند. برابر با این نتایج درمجموع 38 آلل با میانگین 9/1 آلل در هر مکان ژنی افزایش و امتیازبندی شد. هیچ‌کدام از آغازگرها تفاوتی بین نمونۀ کشت بافتی و پاجوشی درون هر رقم نشان ندادند. نتایج تجزیۀ خوشه­ای با استفاده از روش Ward رقم‌ها را به دو گروه اصلی تقسیم کرد. نتایج این بررسی نشان داد، درختان خرمای به‌دست‌آمده از روش افزایش کشت بافت (اندام­زائی مستقیم) از لحاظ ژنتیک مانند گیاهان مادری بوده است، لذا روش افزایش سریع نمونه­های خرما به‌منظور تولید نهال با استفاده از اندام­زائی مستقیم در شرایط درون شیشه­ای توصیه می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of genetic stability of plantlets from tissue culture Date Palm using microsatellite markers

نویسندگان [English]

  • Ehsan Shahbazi 1
  • Khalil Alami Seaid 2
  • Afshin Salavati 3
  • Nasim Gholami 4
  • Pooran Golkar 5
1 Assistance Professor, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
2 Assistant Professor, Faculty of Agriculture, Ramin Agriculture and Natural Resources of Khouzestan, Iran
3 Former Ph.D. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
4 Former M. Sc. Student, Faculty of Agriculture, Ramin Agriculture and Natural Resources of Khouzestan, Iran
5 Assistant Professor, Research Institute for Biotechnology and Bio Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Date palm (Phoenix dactylifera L.) is a dioecious and long life plant which has high economic important in Iran. Date palm is propagated traditionally through the off shoot that is more laborious and expensive. So, other amplification methods, such as tissue culture are used for its multiplication. Plant tissue culture is leading to somaclonal variation, due to epigenetic non- inherited variation which is a temporary phenotypic effect.  However, in some cases, these genetic instability caused reduction at the tendency of farmers to cultivate tissue- culture based genotypes of palm. Genetic stability of ten Iranian genotypes of date palm (originated by tissue culture via direct organogenesis and off-shoot) was evaluated by 20 primers of SSR (Simple Sequence Repeat). Four primers (mPdCIR044, PDAAG1023, DP172 and PDAAG1025) were polymorphic. According to obtained results, total of 38 alleles were detected, resulting a mean number of 1.9 allele per locus. No microsatellite DNA variation was observed among tissue culture and their offshoots in each cultivar. According to WARD cluster analysis, the genotypes were grouped into two main groups. The results of this study showed that identical genetic structure for date palm originated by two methods of tissue culture and off-shoot, in each cultivar. Hence, the plant tissue culture method is advised for rapid propagation in date palm genotypes. 

کلیدواژه‌ها [English]

  • Genetic diversity
  • marker
  • somaclonal
  • Stability
  1. Abahmane, L.(2011). Date palm micropropagation via organogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (Ed). Date Palm Biotechnology. (pp. 69-90). Springer Science. 
  2. Akkak, A., Scariot, V., Torello Marinoni, D., Boccacci, P., Beltramo, C. & Botta, R. (2009). Development and evaluation of microsatellite markers in Phoenix dactylifera L. and their transferability to other Phoenix species. Biologia Plantarum, 53(1), 164-166.
  3. Al Kaabi, H. H., Zaid, A. & Ainsworth, C. (2005) Plant-off types in tissue culture-derived date palm (Phoenix Dactylifera L.). In: Proceedings of International Workshop on True-to-Typeness of Date Palm Tissue Culture-Derived Plants. 23-25 May, National Institute of Agronomic Research, Morocco, pp.14-26.
  4. AlKhateeb, A. A. (2008). The problems facing the use of tissue culture technique in date palm (Phoenix dactylifera L.). Scientific. Journal King Faisal University (Basic and Applied Sciences), 9, 85-104.
  5. Al-Khayri, J. M. (2003). In vitro germination of somatic embryos in date palm: effect of auxin concentration and strength of MS salts. Current Science, 84:680-683.
  6. Al-Ruqaishi, I. A., Davey, M., Alderson, P. & Mayes,S.(2007). Geneticrelationshipsand genotype tracing in date palms (phoenix dactylifera L.) in Oman based on microsatellite markers. Plant Genetic Resources, 6(1), 70­72.
  7. Al-Wasel, A. S. (2005). Survey Study On: Somaclonal variations in in-vitroderived date palm trees. In: Proceedings of International Workshop on True-to-typeness of Date Palm Tissue Culture-Derived Plants. 23-25 May, National Institute of Agronomic Research, Morocco, p. 44.
  8. Arabnezhad, H., Bahar, M., Mohammadi, H. R. & Latifian, M. (2012). Development, characterization and use of microsatellite markers for germplasm analysis in date palm (Phoenix dactylifera L.). Scientia Horticulturae, 134, 150-156.
  9. Askari, E. & Al-Khalifah, N. S. (2003). Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Genetics, 107, 1266-1270.
  10. Barrow, S. (1998). A monograph of Phoenix L. (Palmae: Coryphoideae). Kew Bull, 53, 513-575.
  11. Bassam, B. J. & Caetano-Anolles, G. (1993). Silver staining of DNA in polyacrylamide gels. Applied Biochemistry and Biotechnology, 42, 181-188.
  12. Bekheet, S. (2013). Direct organogenesis of Date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Scientia Agriculturae, 4(3), 85-92.
  13. Bell, G. I. (1996). Evolution of simple sequence repeats. Computational Chemistry, 20(1), 41-48.
  14. Chaluvadi, S. R., Khanam, S., Aly, M. A. & Bennetzen, J. L. (2014). Genetic diversity and population structure of native and introduced date palm (Phoenix dactylifera L.) germplasm in the United Arab Emirates. Tropical Plant Biology, 7, 30-41.
  15. Dayani, O., Khezri, A. & Moradi, A. A. (2012). Determination of nutritive value of date palm by-products using in vitro and in situ measurements. Small Ruminant Research, 105, 122-125.
  16. Doyle, J. J. & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissues. Focus, 12, 11-15.
  17. Ebtissam, H. A., Adawy, S., Ismail, S. E. & El-Itriby, H. A. (2008). Molecular characterization of some Egyptian date palm germplasm using RAPD and ISSR markers. Biotechnology, (1), 83-98..
  18. Elsafi, M. (2014). Study on the on-farm diversity of local date palm (Phoenix dactylifera L.) genetic resources grown in Northern region of Sudan. Ph.D. Thesis, University of Swedish, Swedish.
  19. Elshibli, S. & Korpelainen, H. (2008). Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genetica, 134, 251-260.
  20. Food and Agriculture Organization. (2012). Date palm production, from http:// www.fao.org.
  21. Gurevich, V., Lavi, U. & Cohen, Y. (2005). Genetic variation in date palms propagated from offshoots and tissue culture. Horticultural Science, 130(1), 46-53.
  22. Hamwieh, A., Farah, J., Moussally, S., Al-Sham, K., Almer, K., Khierallah, H., Udupa, S., Lababidi, S., Malek, J. A., Aaouine, M. & Baum, M. (2010). Development of 1000 microsatellite markers across the date palm (Phoenix dactylifera L.) genome. Acta Horticulture, 882, 269-277.
  23. Hedrick, P. W. (1999). Genetic of Populations (2nd ed.). Jones and Bartlett Publishers, Sudbury, MA, USA.
  24. Jain, M. (2007). Recent advances in date palm tissue culture and mutagenesis. Acta Horticulture, 736, 205-211.
  25. Khan, S. & Bi, T. B. (2012). Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation. Pakistan Journal of Botany, 44(6), 1965-1971.
  26. Khanam, S., Sham, A., Bennetzen, J. & Alyl, M. (2012). Analysis of molecular marker-based characterization and genetic variation in date palm (Phoenix dactylifera L.). Crop Science, 6(8), 1236-1244.
  27. Khierallah, H., Bader, S., Baum, M. & Hamwieh, A. (2011). Genetic diversity of Iraqi date palms revealed by microsatellite polymorphism. Horticulture Science, 136(4), 282-287.
  28. Kriaa, W., Masmoudi, F. & Drira, N. (2007). In vitro culture of date palm using mature female flower explants. In: Proceedings of the fourth Symposium on Date Palm, 5-8 May, Saudi Arabia, King Faisal University, Al-Hassa. p.146.
  29. Kumar, N., Singh, A.S., Modi, A., Patel, A. R., Gajera, B. & Subhash, N. (2010). Genetic stability studies in 21. Micropropagated date palm (Phoenix dactylifera L.) plants using microsatellite marker. Forest Science, 26, 31-36.
  30. Moghaieb, R. E., Abdel-Hadi, A. A. & Ahmed, M. R. (2011). Genetic stability among date palm plantlets regenerated from petiole explants. Biotechnology, 10, 14311-14318.
  31. Mohammadi, S. & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants-salient statistical tools and consideration. Crop Science, 43, 1235-1248.
  32. Nei, M. (1983). Genetic polymorphism and the role of mutation in evolution. Genetics, 165-190.
  33. Peakall, R. & Smouse, P. E. (2012). Gen AlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics, 28, 2537-2539.
  34. Racchi, M., Bove, M., Turchi, A., Bashir, G., Battaglia, M. & Camussi, A. (2013). Genetic characterization of Libyan date palm resources by microsatellite markers. Biotechnology, 4, 21-32.
  35. Sefc, K. M., Lopes, M. S., Lefort, F., Botta, R., Roubelakis-Angelakis, K. A., Ibanez, J., Pejic, I., Wanger, H. W., Glossl, J. & Steinkellner, H. (2000). Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivar. Theoretical and Applied Genetics, 100, 498-505.
  36. Younis, R. A., Ismail, O. M. & Soliman, S. S. (2008). Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. Agriculture & Biology Science, 4, 287-184.
  37. Zaid, A. & De Wet, P.F. (2002). Date Palm propagation. Food and Agriculture Organization of the United Nations Rome 73-105.
  38. Zehdi, S., Trifi, M., Billotte, N., Marakchi, M. & Pintaud, J.C. (2004). Genetic diversity of Tunisian date palms (Phoenix dactylifera L.) revealed by nuclear microsatellite polymorphism. Hereditas, 141, 278-287.