بررسی شاخص‌های اکسیداتیو در سه رقم انگور (Vitis vinifera L.) در شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

چکیده

به‌منظور بررسی واکنش­های فیزیولوژیکی و بیوشیمیایی برخی رقم‌های انگور تحت تنش خشکی، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با سه رقم انگور غیرپیوندی بی‌دانۀ سفید، چفته و یاقوتی و چهار تیمار خشکی در حد 3/0- (شاهد)، 6/0- ( ملایم)، 1- (متوسط) و 5/1- (شدید) مگاپاسکال پتانسیل آب خاک، در سه تکرار در سال 1392 به اجرا درآمد. در این آزمایش گیاهان دوساله انگور در گلدان­های 20 لیتری (قطر گلدان 28 سانتی‌متر و ارتفاع گلدان 60 سانتی‌متر) محتوای خاک لومی- شنی در فضای آزاد (مزرعه) کاشته شدند. نتایج این پژوهش نشان داد که در رقم بی­دانه با افزایش سطوح تنش خشکی، محتوای نسبی آب برگ (RWC)، میزان سبزینۀ (کلروفیل) a و b کاهش یافت ولی میزان نشت یونی، تجمع مالون­دی­آلدئید(MDA)، فعالیت آنزیم لیپوکسیژناز (LOX) که مسئول پراکسیداسیون اسیدهای چرب غشا است به همراه میزان پراکسید هیدروژن (H2O2) افزایش یافتند. همچنین در فعالیت آنزیم­های پاداکسندگی (آنتی‌اکسیدانی) شامل کاتالاز (CAT)، آسکوربات پراکسیداز (APX)، گایکول پرکسیداز و ظرفیت پاداکسندگی کل (DPPH) تغییر معنی‌داری مشاهده نشد که نشان­دهندۀ این واقعیت است که رقم بی‌دانۀ سفید تحت تنش خشکی کمترین میزان انسجام غشایی را دارد. رقم چفته نیز بالاترین میزان RWC و میزان سبزینۀ a و b در مقایسه با رقم‌های بی­دانۀ ­سفید و یاقوتی را داشت. برخلاف رقم بی‌دانۀ سفید، رقم‌های چفته و یاقوتی در سطوح تنش خشکی توانایی بالاتری در حفظ انسجام غشایی داشتند و میزان بالاتری از فعالیت آنزیم­های پاداکسندۀ CAT، APX،GPX ، به همراه تجمع پایین H2O2 را داشتند. با توجه به یافته‌های این پژوهش می‌توان گفت که رقم چفته و در مراحل بعد رقم یاقوتی پتانسیل بالاتری برای رویارویی با شرایط کم‌آبی در مقایسه با رقم بی‌دانۀ سفید دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of oxidative parameters in three grapevine cultivars under drought stress

نویسندگان [English]

  • Reza Soukhtesaraee 1
  • Ali Ebadi 2
  • Seyed Alireza Salami 3
  • Hossein Lesani 2
1 Former M. Sc. Student, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

For evaluation of physiological and biochemical response of some grapevine cultivars to drought stress, an experiment was carried out in 2014 as a factorial arranged in a randomized complete block design with three replications. Three cultivars i. e. “Bidane Sefid”, “Chafte” and “Yaghooti” and four drought stress levels, including -0.3, -0.6, -1 and -1.5 MP soil water potential were employed. In this experiment, two years old grapes were cultured in pots with 28 cm in diameter and 60 cm in height, containing sandy-loam soil in field conditions. Results showed that in “Bidane sefid”, under drought stress (-0.3 to -1.5 MP), RWC, chlorophyll a and b content, and antioxidant enzymes CAT, APX, GPX activity along with DPPH scavenging capacity were declined, but electrolyte leakage, MDA content, LOX enzyme activity (responsible for membrane unsaturated fatty acid peroxidation), along with H2O2 accumulation were increased. Results indicated that ‘Bidane Sefid’ under drought stress had higher oxidative damage, led to lower membrane integrity. In comparison with “Bidane sefid”, “Chafte” and “Yaghooti” under drought stress, due to higher antioxidant enzymes (CAT, APX, GPX) with higher DPPH scavenging capacity, exhibited lower oxidative damage, led to higher membrane integrity. According to our results, it can be concluded that “Chafte” followed by “Yaghooti” had higher potential to tolerate drought stress compared with “Bidane sefid”.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • Drought stress
  • Grapevine
  • Membrane integrity
  • oxidative stress
  1. Aebi, H. (1984) Catalase in vitro. Methods Enzymology, 105, 121-126.
  2. Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell and Environment, 24, 1337-1344.
  3. Alsher, R.G., Erturk, N. & Heath, L. (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331-1341.
  4. Plewa, M. J., Smith, S. R. & Wanger, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research, 247, 57-64.
  5. Asada, K. & Takahashi, M. (1987). Production and scavenging of active oxygen in chloroplasts. In: DJ Kyle, CB Osmond, CJ Arntzen, Eds, and Photoinhibition. Elsevier, Amsterdam, PP, 227-287.
  6. Bakhshi, D. & Arakawa, O. (2006). Induction of phenolic compounds biosynthesis with light irradiation in the Tesh of red and yellow apples. Journal of Applied Horticulture, 8(2), 101-104.
  7. Bandeoğlu, E., Eyidoğan, F., Yücel, M. & Öktem, H. A. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42(1), 69-77.
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1), 248-254.
  9. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M,, Inzé, D. & Van Breusege, F. (2000) Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57, 779-795.
  10. Deborth, L. B. & Bruce, G. B. (1998). Photosynthetic capacity and mass partitioning dwarf and semi-dwarf wheat. Journal of Plant Physiology, 153, 558-565.
  11. Eberhardt, M. V., Lee, C. Y. & Liu, R. H. (2000). Nutrition: Antioxidant activity of fresh apples. Nature, 405(6789), 903-904.
  12. Egert, M. & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48(1), 43-49.
  13. Esteban, M. A., Villanueva, M. J. & Lissarrague, J. R. (1999). Effect of irrigation on changes in berry composition of Tempranillo during maturation. Sugars, organic acids, and mineral elements. American Journal of Enology and Viticulture, 50(4), 418-434.
  14. Esteban, M. A., Villanueva, M. J. & Lissarrague, J. R. (2001). Effect of irrigation on changes in the anthocyanin composition of the skin of cv. Tempranillo (Vitis vinifra L.) grape berries during ripening. Journal of the Science of Food and Agriculture, 81, 402-420.
  15. Flexas, J., Bota, J., Loreto, F., Cornic, G. & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drough and salinity in C3 plant. Plant Boilogy, 6, 1-11.
  16. Ghaderi, N., Siosemardeh, A. & Shahoei, S. (2005). The effect of water stress on some physiological characteristics in rasheh and khoshnave grape cultivars. Acta Horticulturae, 754, 317-332.
  17. Halliwel, B. & Gutteridge, J. M. (1984). Oxygen toxicity, oxygen radicals, transition metal and disease. Journal of Biological Chemistry, 219, 1-14.
  18. Halliwell, B. & Gutteridge, J. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical journal, 219(1), 1.
  19. Hammond-Kosack, K. E. & Jones, J. D. G. (1996). Resistance gene-dependent plant defense responses. Plant Cell, 8, 1773-1791.
  20. Hura, T., Hura, K., Grzesiak, M. & Rezepka, A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 Plant. Acta Physiologiae Plantarum, 29, 103-113.
  21. Iturbe-ormaetxe, I., Escuredo, P.R., Arrese-Igor, C. & Becana, M. (1998). Oxidative damage in pea plant exposed to water deficit or paraquat. Plant Physiology, 116, 173-181.
  22. Laspina, N. V., Groppa, M. D., Tomaro, M. L. & Benavides, M. P. (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science, 169, 323-330.
  23. Lawlor, D. W. & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plant. Plant Cell and Environment, 25, 275-294.
  24. Le Dily, F., Billard, J. P., Le Saos, J. & Huault, C. (1993). Effects of NaCl and gabaculine on chlorophyll and proline levels during growth of radish cotyledons. Plant Physiology and Biochemistry, 31, 303-310.
  25. Lichtenthaler, H. K. & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV‐VIS Spectroscopy. Current protocols in food analytical chemistry.
  26. Liu, F., Jensen, C. R. & Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Research, 86(1), 1-13.
  27. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Science, 7(9), 405-410.
  28. Moller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport NADPH turnover, and metabolism of reactive oxygen species. Annual Review. Physiology and Molecular Biology of Plants, 52, 561-591.
  29. Noctor, G. & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279.
  30. Ohkawa, H., Ohishi, N. & Yaqi, K. (1979). Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Annals of Biochemistry, 95, 351-358.
  31. Pereria, J. S. & Chaves, M. M. (1995). Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Moreno, J.M., Oechel, W.C. (Eds), GLobal change and Mediterranean-type Ecosystems, Ecology Studies, vol, 117. Springer-Verlag, Berlin, PP, 140-160.
  32. Plewa, M. J., Smith, S. R., & Wagner, E. D. (1991). Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation research/fundamental and molecular mechanisms of mutagenesis, 247(1), 57-64.‏
  33. Rabiei, V. (2003). Evaluation of physiological and morphological responses of some grape varieties under droght stress. Ph. D. thesis. Faculty of Horticulturae University, Tehran.
  34. Ranieri, A., Castagna, J., Pacini, B., Baldan, A. & Mensuali Sodi, G. F. (2003). Soldatini Early production and scavenging of hydrogen peroxide in the apoplast of sunflowers plants exposed to ozone. Journal of Experimental Botany, 54, 2529-2540.
  35. Rubio, M. C., González, E. M., Minchin, F. R., Webb, K. J., Arrese‐Igor, C., Ramos, J. & Becana, M. (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum, 115(4), 531-540.
  36. Sairam, R. K., Chandrasekhar, V. & Srivastava, G. C. (2001). Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biologia Plantarum, 44(1), 89-94.
  37. Scandadalius, J. G. (1993). Oxygen stress and superoxide dismutase. Plant Physiology, 101, 7-12.
  38. Shulaev, V. & Oliver, D. J. (2006). Metabolic and proteomic markers for oxidative stress, new tools for reactive oxygen species research. Plant Physiology, 141, 367-372.
  39. Sircelj, H., Tausz, M., Grill, D. & Batic, F. (2007). Detecting different levels of drought stress in apple (Malus domestica brrkh.) with selected biochemical and physiological parameters. Scientia Horticulturae, 113, 362-369.
  40. Souse, T. A., Oliveira, M. T. & Pereira, J. M. (2006). Physiological indicators of plant water status of irrigated and non- irrigated grapevines grown in a low rainfall area of Portugal. Plant and Soil, 282, 127-134.
  41. Stewart, R. C. & Beweley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65, 245-248.
  42. Sundhacar, C., Lakshmi, A. & Giridarakumar, S. (2001). Changes in the Antioxidant Enzyme Efficacy in two High Yielding Genotypes of Mulberry (Morus alba L.) under NaCl Salinity. Plant Science, 161, 613-619.
  43. Talaie, A. R., Ghaderi, N., Ebadi, A. & Lesani, H. (2009). Biochemical responses of two varieties of seedless white grapes Sahany and changes in soil water potential. Acta Horticulturae, 42(3), 301-308.
  44. Tiaz, L. & Zeiger, E. (1998). Plant Physiology. 2nd ed. Sinauer Associates Inc., Massachusetts.
  45. Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1-3), 339-366.
  46. Wang, J. W., Zheng, L. P., Wu, J. Y. &Tan, R. X. (2006). Involvement of nitric oxide in oxidative burst phenylalanine ammonia-lyase activation and taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Biology and Chemistry, 15, 351-358.
  47. Xi, Z. M., Fang, Y. L., Guo, Y. Z. & Zhang, Z. W. (2007). The effect of water stress on main physiological indexes of wine grape leaf [J]. Agricultural Research in the Arid Areas, 3, 030.
  48. Yanbao, L., Chunying, Y. & Chunyang, L. (2006). Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting population of populous przewalskii. Physiologia Plantarum, 127, 182-191.