بررسی تأثیر پوترسین و کلریدسدیم بر ویژگی‌های ریخت‌شناختی و فیزیولوژیک کنار بومی جنوب ایران (Ziziphus spina-christi L.)

نوع مقاله: مقاله کامل

نویسندگان

1 دانشیار، دانشکده کشاورزی، دانشگاه شیراز

2 دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی، دانشگاه شیراز

چکیده

در این پژوهش، تأثیر سطوح مختلف شوری و کاربرد پلی­آمین پوترسین در غلظت­های مختلف برای کاهش تأثیر زیانبار کلرید سدیم بر ویژگی­های ریخت‌شناختی (مورفولوژیک) و فیزیولوژیک کنار بومی جنوب ایران بررسی شد. آزمایش فاکتوریل با سه سطح پوترسین 0، 01/0 و 1/0 میلی­مولار و چهار سطح کلرید سدیم 0، 2/3، 4/6، 8/12 گرم نمک در لیتر با چهار تکرار در یک طرح کامل تصادفی اجرا شد. نتایج نشان داد که با افزایش شوری همۀ شاخص­های رشد مانند شمار برگ، طول ساقه و ریشه همچنین وزن تازه و خشک برگ و ریشه کاهش یافت و محلول‌پاشی با پوترسین به‌ویژه در غلظت 1/0 میلی­مولار سبب بهبود وضعیت رشدی گیاه در شرایط شوری شد. شوری سبب افزایش جذب یون سدیم و کلر و کاهش جذب یون پتاسیم شد. کاربرد پوترسین سبب تعدیل جذب سدیم و افزایش جذب پتاسیم شد. شوری همچنین سبب کاهش سبزینه (کلروفیل) و میزان نشاسته و افزایش پرولین و قندهای محلول شد. کاربرد پوترسین سبب کاهش تأثیر زیانبار شوری بر تجزیۀ سبزینه و همچنین سبب افزایش میزان پرولین قند و نشاسته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of putrescine and sodium chloride on morphological and physiological characteristics of wild ‘Konar’ (Ziziphus spina-christi L.)

نویسندگان [English]

  • Akhtar Shekafandeh 1
  • Shoreh Takhti 2
1 Associate Professor, Faculty of Agriculture, University of Shiraz, Iran
2 Former M. Sc. Student, Faculty of Agriculture, University of Shiraz, Iran
چکیده [English]

In this research, effect of different levels of salinity and application of different concentration of putrescine were investigated for decreasing harmful effects of salt on morphological and physiological characteristics of wild ‘Konar’. A factorial experiment was arranged in a Compelet Randomized Design (CRD) with 4 replications. Treatments were 4 levels of 0, 3.2, 6.4 and 12.8 g/l sodium chloride and 3 levels of 0, 0.01 and 0.1 mM putrescine. The results showed that with increasing salinity, all growth indices such as leaf number, stem length leaf and root fresh and dry weight reduced and spraying application of putrescine especially with 0.1 mM concentration ameliorated seedlings growth in salt condition. Salt stress increased Na+ and Cl- uptake and declined K+ uptake.  Foliar Putrescine application reduced and increased Na+ and K+ uptake, respectively. Salinity also reduced the amount of chlorophyll and starch, but the amount of proline and soluble sugars were increased. Applied putrescine reduced the damaging effect of salt on chlorophyll degradation and also increased the amount of proline, sugar and starch.

کلیدواژه‌ها [English]

  • Chlorophyll
  • proline
  • salt stress
  • soluble sugars
  • starch
  1. Abasspour Ashena Abad, N. (2005). Effects of plant growth regulators and antitranspirant agents on salt tolerance of barley and bean plants. M.Sc. thesis, Shiraz University, 162 P. (in Farsi)
  2. Assad, M. (2012). Dashteh talahei Bahoo. Retrieved may 20, 2013 from: http://goldenbahoo.blogfa.com.
  3. Ashraf, M. & Tufail, M. (1995). Variation in salinity tolerance in sunflower (Helianthus annuus L.). Journal of Agronomy and Crop Science, 174, 351-362.
  4. Assareh, M. H. (2008). Biochracteristics of Konar trees in Iran and introduction of other species of Ziziphus. Research Institute of Forests and Rangelands. 571 p. (in Farsi)
  5. Aziz, A., Martin-Tanguy, J. & Larher, F. (1998). Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 104, 195-202.
  6. Bar, Y., Apelbaum, A., Kafkafi, U. & Goren, R. (1997). Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. Journal of Plant Nutrition, 20,715-731.
  7. Bates, L. S., Waldren, R. P. & Teare, F. D. (1973). Rapid determination of free proline from water stress studies. Plant and Soil, 39, 205-207.
  8. Besford, R. T., Richardson, C. M., Campos, J. L. & Tiburcio, A. F. (1993). Effect ofpolyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta, 189, 201-6.
  9. Bhat, J. M., Patel, D. A., Bhatti, M. P. & Pandey, A. N. (2008). Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). Journal of Fruit and Ornamental Plant, 16, 383-401.
  10. Crowe, J. H., Crowe, L. M. & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701-703.
  11. Dubey, R. S. & Singh, A. K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biologia Plantarum, 42, 233-9.
  12. Esna-Ashari, M. & Zokaee Khosroshahi, M. (2008). Polyamins and Horticultural Science. Bou- Alisina University. 188 P. (in Farsi).
  13. Feigin, A., Rylski, I., Meiri, A. & Shalhevet, J. (1987). Response of melon and tomato plants to chloride-nitrate ratios in saline nutrient solutions. Journal of Plant Nutrition, 10, 1787-1794.
  14. Fox, T. C. & Guerinot, M. L. (1998). Molecular biology of cation transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 669-696.
  15. Frederic, V., Romain, C. H., Armel, B., Michele, F., Catherine, M., Fabienne, G. & Emmanelle, A. (2010). Bay of biscays temperature and salinity climatology: Bobyclim. Archimer, Ifremers Institutional Repository. pp.567.
  16. Glenn, E. P., Pfister, R., Brown, J. J., Thomson, T. L. & O’Leary, J. W. (1996). Na+ and K+ accumulation and salt tolerance of Atriplex canescens genotypes. American Journal of Botany, 83(8), 997-1005.
  17. Grattan, S. R. & Grieve, C. M. (1994). Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. (pp. 203-226). Marcel Dekker, New York.
  18. Gupta, N. K., Meena, S. K., Gupta, S. & Khandelwal, S. K. (2002). Gas exchange, membrane permeability and ion uptake in two species of Indian jujube differing in salt tolerance; Photosynthetica, 40, 535-539.
  19. Hasegawa, P. M., Bressen, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology, 51, 463-499.113.
  20. Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F. & Del Rio, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Scienc, 105, 151-167.
  21. Kafi, M., Borzouei, A., Kamandi, A., Masoumi, A. & Nabati, J. (2009). Physiology of enviromental stresses in plants. Jahad Daneshgahi Mashhad. 502 p. (in Farsi)
  22. Lea-Cox, J. D. & Syvertsen, J. P. (1993). Salinity reduces water use and nitrate-N-use efficiency of citrus. Annal of Botany, 72, 47-54.  
  23. Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press, London p.889.
  24. Mostofi, Y. & Najafi, F. (2005). Laboratory analytical methods in Horticultural Science. Tehran University publications. 136 p. (in Farsi)
  25. Munns, R., Fisher, D. B. & Tonnet, M. L. (1986). Na+ and Cl transport in the phloem from leaves of NaCl-treated barley. Australian journal of plant physiology, 13, 757-766.
  26. Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell & Environment,16, 15-24.
  27. Paramonova, N.V., Shevyakova, N.I. & Kuznetsov, V.L.V. (2004). Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russian Journal of Plant Physiology, 1, 99-104.
  28. Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2, 324-349.
  29. Reddy, M. P. & Vora, A. B. (1986). Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S & H) leaves under NaCl salinity; Photosynthetica, 20, 50-55.
  30. Rubinigg, M., Wenisch, J., Elzenga, J. T. M. & Stulen, I. (2004). NaCl salinity affects lateral root development in Plantago maritima. Functional Plant Biology, 31, 775-780.
  31. Saied, A. S., Gebauer, J., Hammer, K. & Buerkert, A. (2008b). Ziziphus spina-christi (L.) Willd.: a multipurpose fruit tree. Genetic Resources and Crop Evolution, 55, 929-937.
  32. Santa-Cruz, A., Estan, M. T., Rus, A., Bolarin, M. C. & Acosta, M. (1997b). Effects of NaCl and mannitol iso-osmotic stresses on the free polyamine levels in leaf discs of tomato species differing in salt tolerance. Journal of Plant Physiology, 151, 754-8.
  33. Schachtman, D. P., Kumar, R., Schroeder, J. I. & Marsh, E. L. (1997). Molecular and functional characterization of a novel low-affinity cation transporter (LCTI) in higher plants. In: Proceeding of the Natural Academey Science USA. 94, 11079-11084.
  34. Sharma, L. K., Kaushal, M., Kaur Bali, S. & Choudhary, O. P. (2013). Evaluation of rough lemon (Citrus jambhiri Lush.) as rootstock for salinity tolerance at seedling stage under in vitro conditions.  African Journal of Biotechnology, 12(44), 6267-6275.
  35. Sohail, M., Saied, A. S., Gebauer, J.& Buerkert, A. (2009). Effect of NaCl salinity on growth and mineral composition of Ziziphus spina-christi (L.) Willd. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 110(2), 107-114.
  36. Sudhersan, C. & Hussain, J. (2003). In vitro clonal propagation of a multipurpose tree, Ziziphus spina-christi (L.) Desf. Turkish Journal of Botany, 27, 167-171.
  37. Taiz, L. & Zeiger E. (2006). Plant physiology (Fourth Edition). Sinauer Associates, Inc., Publishers, Sunderland, USA 764 p.
  38. Tattini, M., Bertoni, P. & Caselli, S. (1992). Genotypic responses of olive plants to sodium chloride. Journal Plant Nutrition, 15, 1467-1485.
  39. Therios, I.N. & Misopolinos, N.D. (1988). Genotypic response to sodium chloride salinity of four major olive cultivars (Olea europea L.). Plant and Soil, 106,105-111.
  40. Tiburcio, A. F., Kaur-Sawhney, R. & Galston, A. W. (1990). Polyamine metabolism. In: B.J. Miflin, P.J. Lea (Ed.), The Biochemistry of Plants, Intermediary Nitrogen Fixation. (pp. 283-325). Academic, New York.
  41. Willadino, L., Camara, T., Boget, N., Claparols, Y., Santos, M. & Torne´, J. M. (1996). Polyamine and free amino acid variations in NaCl-treated embryogenic maize callusfrom sensitive and resistant cultivars. Journal of Plant Physiology, 149, 179-185.