تأثیر اسید سالیسیلیک بر تغییرپذیری روزنه و برخی صفات رویشی گیاه همیشه بهار (Calendula officinalis L.) در تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشکدة کشاورزی، دانشگاه شهید باهنر کرمان

2 دانشیار پژوهشکدة باغبانی، دانشگاه شهید باهنر کرمان

چکیده

شوری یکی از عامل‌های مهم محیطی است که رشد گیاهان را محدود می‌کند. به‌منظور بررسی تأثیر اسید سالیسیلیک بر برخی صفات رویشی و تغییرپذیری روزنة گیاه همیشه بهار، آزمایشی به‌صورت فاکتوریل بر پایة طرح کامل تصادفی با پنج تکرار در گلخانة تحقیقاتی دانشگاه شهید باهنر کرمان در سال 1391 انجام شد. شوری به‌عنوان عامل اول با پنج سطح 1، 3، 5، 7 و 9 میلی‌موس بر سانتی‌متر و اسید سالیسیلیک به‌عنوان عامل دوم با سه سطح 0، 100 و 200 میلی‌گرم بر لیتر در نظر گرفته شد. نتایج نشان داد که تنش شوری و اسید سالیسیلیک هر دو سبب کاهش طول و عرض روزنة برگ‌ها شدند. بالاترین سطح شوری، سبب کاهش وزن خشک اندام هوایی، ریشه و محتوای نسبی آب برگ‌ها به ترتیب به مقدار 51، 58 و 24 درصد نسبت به شاهد شد. کاربرد اسید سالیسیلیک موجب بهبود این صفات در همة سطوح شوری شد. در بالاترین سطح شوری کاربرد محلول 200 میلی‌گرم بر لیتر اسید سالیسیلیک، به ترتیب موجب افزایش 24 و 28 درصدی وزن خشک اندام هوایی و ریشه و محلول 100 میلی‌گرم بر لیتر سبب افزایش 9 درصدی محتوی نسبی آب برگ نسبت به بدون کاربرد آن‌ها شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Salicylic acid effects on stomatal characteristics and some growth of calendula plants (Calendula officinalis L.) under salt stress

نویسندگان [English]

  • Fatemeh Dehghan Nayeri 1
  • vahid reza safari 2
  • Ali Akbar Maghsoudi Moud 2
2 shahid bahonar University of Kerman
چکیده [English]

In order to investigate the effects of salicylic acid on some growth and stomatal characteristics of calendula plant, a factorial experiment was conducted based on completely randomized design with five replications in the research Greenhouse of Shahid Bahonar University of Kerman in 2013. Salt stress levels including 1, 3, 5, 7 and 9 mmhos/cm were applied to the soil and salicylic acid solutions with 0, 100 and 200 mg/lit concentration were sprayed on plants. Results showed that both salt stress and salicylic acid reduced length and width of stomata. Compared to the control conditions, highest level of salt stress reduced plant shoot and root dry matter and also relative water content to 51, 58 and 24 percent, respectively. However, application of salicylic acid improved all these characteristics at all applied levels of salt stress. Compared to the control conditions, application of 200 mg/lit solution of salicylic acid increased plant shoot and root dry matter (24 and 28%), respectively. Meanwhile, 100 mg/lit salicylic acid solution increased the relative water content (9%) compared to the control.

کلیدواژه‌ها [English]

  • dry matter
  • relative water content
  • Salicylic Acid
  • salinity
  • stomatal length and width
  1. Aftab, T., Masroor, M., Khan, A., Teixeira Da silva, J. A., Idrees, M., Naeem, M. & Moinuddin. (2011). Role of Salicylic Acid in Promoting Salt Stress Tolerance and Enhanced Artemisinin Production in Artemisia annua L.. Journal of Plant Growth Regulators, 30, 425-435.
  2. Agarawal, S., Sairam, R. K., Srivasta, G. C. & Meena, R. C. (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541-550.
  3. Ainsworth, E. A. & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment,30, 258-270.
  4. Bandurska, H. & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiolgy Plant, 27, 379-386.
  5. Bayat, H., Alirezaie, M. & Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. Journal of stress Physiology & Biochemistry, 8(1), 258-267.
  6. Cavusoglu, K., Kilic, S. & Kabar, K. (2008). Effects of Some Plant Growth Regulators on Leaf Anatomy of Radish Seedlings Grown Under Saline Conditions. Journal of Applied Biological Sciences, 2 (2), 47-50.
  7. Colom, M. R. & Vazzana, C. (2003). Photosynthesis and PSII functionality of drought resistant and droughtsansitive weeping lovegrass plants. Environmental and Experimental Botany, 49, 135-144.
  8. Condon, A. G., Richards, R. A., Rebetzek, G. J. & Farquhar, G. D. (2004). Breeding for high water use efficiency. Experimental Botany, 55, 2447-2460.
  9. Dong, F. C., Wang, P. T. & Song, C. P. (2001). The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells. Acta Phytophysiol Sinica, 27, 296-302.
  10. El-Tayeb, M. A. (2005). Response of barley grain to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 42, 215-224.
  11. Enteshari, Sh. & Sharifian, Sh. (2012). Influence of salicylic acid on growth and some biochemical parameters in a C4 plant (Panicum miliaceum L.) under saline conditions. African Journal of Biotechnology, 11(3), 621-627.
  12. Ewers, B. E. & Oren, R. (2000). Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiology,20, 579-589.
  13. Fatemi, R. & Aboutalebi, A. (2012). Evaluation the interaction of salinity and salicylic acid on Sweet basil (Ocimum basilicum) properties. Annals of Biological Research, 3(11), 5106-5109.
  14. Gonzalez, L. & Gonzalez-Vilar, M. (2003). Determination of relative water content. In: J. Manuel and R. Goger (Eds). Handbook of plant ecophysiology techniques. (pp.207-212.) Kluwer Academic Publishers, London.
  15. Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F. & Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, 51(6), 687-695.
  16. Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Guneri Bagci, E. & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736.
  17. Hao, J. H., Wang, X. L., Dong, C. J., Zhang, Z. G. & Shang, Q. M. (2011). Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russian Journal of Plant Physiology, 58(5), 906-913.
  18. Horvath, E., Szalai, G. & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290-300.
  19. Idress, M., Naeem, M., Aftab, T., Masroor, M., Khan, A. & Moinuddin. (2013). Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). Journal of Hazardous Materials, 252-253, 367-374.
  20. Jianwu, T., Paul, V. B., Brent, E. E., Ankur, R. D. & Kenneth, J. D. (2006). Sap-flux-upscaled canopy transpiration, stomatal conductance and water use efficiency in an old growth forest the GreatLakes region of the United States. Journal of Geophysical Research-Biogeosciences, 111-117.
  21. Kaymakanova, M., Stoeva, N. & Mincheva, T. (2009). Salinity and its effects on the physiological response of bean (Phaseolus vulgaris L.). Journal of Central European Agriculture, 9(4), 749-756.
  22. Khalid, K. A. & Teixeira da silva, J. A. (2012). Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology, 6(1), 12- 27.
  23. Khan, N. A., Syeed, S., Masood, A., Nazar, R. & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1, 1-8.
  24. Kiarostami, Kh., Mohseni, R. & Saboora, A. (2010). Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology and Biochemistry, 6(3), 114-122.
  25. Korkmaz, A., Uzunlu, M. & Demirkairan, A. R. (2007). Treatment with acetylsalicylic acid protects muskmelon seedlings against drought stress. Acta Physiologia Plantarum, 29, 503-508.
  26. Lee, J.S. (1998). The Mechanism of Stomatal Closing by Salicylic Acid in (Commelina communis L.). Journal of Plant Biology, 41(2), 97-102.
  27. Maghsoudi, K. & Maghsoudi moud, A. (2008). Analysis of the effects of stomatal frequency and size on transpiration and yield of wheat (Triticum aestivum L.). American Eurasian Journal of Agricultural and Environmental Sciences, 3(6), 865-872.
  28. Miura, k. & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5(4), 1-12.
  29. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167, 645-663.
  30. Noreen, S. & Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis, Pakistan Journal of Botany, 40, 1657-1663.
  31. Palma, F., Lopez-Gomez, M., Tejera, N. A. & Lluch, C. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science, 208, 75-82.
  32. Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: Review. Ecotoxicology and Environment Safety, 60, 324-349.
  33. Rahdari, P. & Hoseini, S. M. (2011). Salinity stress: a review. Technical Journal of Engineering and Applied Sciences, 1(3), 63-66.
  34. Ren, A. & Wang, Y. (2010). Effects of salt stress on stomatal differentiation and movement of Amaranth (Amaranthus tricolor L.) leaves. Acta Horticulturae Sinica, 37(3), 479-484.
  35. Saidi, I., Ayouni, M., Dhieb, A., Chtourous, Y., Chaibi, W. & Djebali, W. (2013). Oxidative damages induced by short-term exposure to cadmium in bean plants: Protective role of salicylic acid. South African Journal of Botany, 85, 32-38.
  36. Sinclair, T.R. & Ludlow, M.M. (1985). Who taught plants the thermodynamics of water the unfulfilled potential of plant water potential? Australian Journal of Plant Physiology, 12, 213-217.
  37. Wang, D., Shannon, M. C. & Grieve, C. M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69, 267-277.
  38. Xue, Sh., Yang, P. & He, Y. (2008). Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying K+ in channels in Arabidopsis guard cells. Chinese Science Bulletin, 53(14), 2156-2159.
  39. Zhu, M., Dai, Sh., Mc Clung, S., Yan, X. & Chen, S. (2009). Functional differentiation of Brassica napus guard celles and mesophyll cells revealed by comparative proteomics. Molecular & Cellular Proteomics, 8(4), 752-766.