تأثیر فلز کادمیم بر توانائی زیستی و فعالیت برخی آنزیم‌های پاداکسندگی در پینة گیاه پریوش (Catharanthus roseus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشکده علوم، دانشگاه اراک

2 استادیار، دانشکده علوم، دانشگاه اراک

چکیده

پریوش گیاهی زینتی و داروئی است که ازنظر اقتصادی نیز اهمیت دارد. از پینة (کالوس) گیاه پریوش دروایة (سوسپانسیون) یاخته‌ای تهیه و پس از تیمار با دزهای مختلف نیترات کادمیم به مدت 1، 3، 6 روز توانائی زیست توسط تریپان بلو و MTT بررسی شد. سوسپانسیون یاخته‌ای برای بررسی ریخت‌شناسی (مورفولوژی) و بافت پینه برای بررسی فعالیت آنزیم‌های کاتالاز، گایاکول پراکسیداز و سوپراکسید دیسموتاز و پراکسیداسیون لیپیدی پس از تیمار با 0، 20، 30 و 40 میلی‌مولار به مدت سه روز استفاده شد. داده‌ها به روش ANOVA یک‌سویه و آزمون دانکن تجزیه (آنالیز) و  p<0.05 به‌ عنوان سطح معنی‌داری در نظر گرفته شد. داده‌های تریپان بلو و MTT نشان‌دهندة تفاوت معنی‌دار (p<0.05) میانگین توانایی زیستی به‌صورت وابسته به دز در مقایسه با کنترل بود. همچنین فعالیت آنزیم‌‌های موردبررسی در پاسخ به تنش اکسایشی (اکسیداتیوی) ناشی از نیترات کادمیم افزایش معنی‌دار (p<0.05) نشان داد. میزان مالون دی آلدئید به‌عنوان محصول پراکسیداسیون لیپید نیز با افزایش معنی‌دار همراه بود. نیترات کادمیم باعث تخریب غشاء و کاهش توانائی زیستی یاخته‌‌ها شد، افزایش فعالیت آنزیم‌‌های پاداکسندگی قادر به جبران آسیب وارده نبود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of cadmium on viability and activity of some of the antioxidant enzymes in the callus of Catharanthus roseus

نویسندگان [English]

  • Hajar Moradipoor 1
  • Mohammad Hossein Abnosi 2
  • Mohammadreza Amirjani 2
  • Majid Mahdiyeh 2
1 Student
چکیده [English]

Catharantus-roseus is a medicinal and ornamental plant with growing attention toward its economical value. To determine cell viability based on trypan blue  and  MTT assay, cell suspension from callus of Catharantus-roseus were treated with different concentrations of cadmium-nitratee for 1, 3 and 6 days.  Also cell suspension was used to investigate the cell morphology for a period of 3 days using 0, 20, 30 and 40 mM of cadmium nitrate. In addition, the callus was also treated for a same period and concentrations to estimate the level of lipid peroxidation and the activity of superoxide dismutase, catalase and guaiacol peroxidase. Data was analysed using one-way-ANOVA (Duncan-test) and pCatharantus roseus. Activity of the antioxidant enzymes increased significantly but was not able to compensate the caused damages.

کلیدواژه‌ها [English]

  • Antioxidant Enzymes
  • cadmium nitrate
  • catharantus roseus callus
  • cellular response
  • Malondialdehyde
  1. Hasan, SA., Fariduddin, Q., Ali, B., Hayat, S. & Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. Journal of environmental physiology, 30(2), 165-174.

  2. Bhardwaj, P., Chaturvedi, A.K. & Prasad, P. (2009). Effect of Enhanced Lead and Cadmium in soil on Physiological and Biochemical attributes of Phaseolus vulgaris L. Nature and Science, 7(8), 63-75.

  3. Cakmak, I. & Marschner, H. (1992).Manesium deficiency and high light inensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutatione reductase in bean leaves. Plant Physiology, 98(4), 1222-1227.

  4. Diáz, J., Bernal, A., Po Mar, F. & Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Science, 161(1), 179-188.

  5. Farahani, F., Zargar, M. & Nabavi, T. (2011), Anti-bacterial activity of in vitro produced alkaloids in Catharanthus roseus L. African Journal of Microbiology Research, 5(27), 4769-4773.

  6. Fojtova M., Fulneckova J., Fajkus J. & Kovarik A. (2002). Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity. Journal Exprimental Botany, 53(378), 2151-2158.

  7. Foroozesh, P., Bahmani, R., Pazouki, A., asgharzadeh, A. & rahimdabbagh, S. (2012). Effect of cadmium stress on antioxidant enzymes activity in different bean genotypes. ARPN Journal of Agricultural and Biological Science, 7(5), 351-356.

  8. Foyer, C.H. & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloro plants, peroxisomes and mitochondria, physiologia Plantarum, 119(3), 355-364.

  9. Giannopolitis, C.N. & Ries, S.K. (1997). Superoxid dismutase I. occurrence in higher plants. Plant Physiology, 59(2), 309-317.

  10. Gill, S.S & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.plant physiology and biochemistry, 48(12), 909-930.

  11. Israr, M., Sahi, S. V. & Jain, J. (2006).Cadmium accumulation and antioxidative responses in the sesbania drummondii callus. Archive Environmental contamination and Toxicology, 50(1), 121-127.

  12. Kokate, C. K. & Purohit, A. P. (2007) Text Book of Pharmacognosy. 37th edition, 484-487.

  13. Lin, C. C. & Kao, C.H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves, Plant Growth Regulation, 30 (2), 151-155.

  14. Metwally, A., Finkemeier, I., Georgi, M. & Dietz, K. (2003). Salicylic Acid Alleviates The Cadmium Toxicity In Barley Seedlings. Plant Physiology, 132(1), 272- 281.

  15. Michalak, A. (2006). Phenolic Compounds and Their Antioxidant Activity in Plants Growing, under Heavy Metal Stress. Polish Journal of Environtal Studies, 15(4), 523-530.

  16. McCabe, P.F. & Leaver, C.J. (2000). Programmed cell death in cell cultures. Plant Molcular Biology, 44, 359-368.

  17. Morais, M. C., Panuccio, M. R., Muscolo, A. & Freitas, H. (2012). Does salt stress increase the ability of the exotic legume Acacia longifolia to compete with native legumes in sand dune ecosystems? Environmental and Experimental Botany, 82, 74-79.

  18. Narula, A., Kumar, S. & Srivastava, P.S. (2005). Abiotic metal stress enhances diosgenin yield in Dioscorea bulbifera L. cultures. Plant Cell Reports, 24(4), 250-254.

  19. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology Biotechnology, 51(6), 730-750.

  20. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G. & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8-9), 1665-1677.

  21. Pereira, G.J.G., Molina, S.M.G., Lea, P.J. & Azevedo, R.A. (2002). Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant and Soil,239(1), 123-132.

  22. Polle, A., Otter, T. & Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of norway spruce" (Picea Abies L.). Plant Physiology, 106(1), 53-56.

  23. Prasad, K.V., Saradhi, P.P. & Sharmila, P. (1999). Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environmental and Exprimental Botany, 42(1), 1-10.

  24. Radotic, K., Ducic, T. & Mutavdžic, D. (2000).Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environmental and Exprimental Botany, 44(2), 105-113.

  25. Rucinska, R., Waplak, S. & Gwózdz, E. A. (1999). Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiology and Biochemisty, 37(3), 187-194.

  26. Sahw, B.P., Saha, S.K. & Mishra, R.K. (2004). Heavy metal induced oxidative damage interrestrial plant, In: presad, M.N.V. (ED), heavy metal stress in plants. From Biomolecules to Ecosystem second ed.Springer, Berlin, 84-126.

  27. Saifullah & Saifullah Khan. (2011).Callus induction and cell suspension culture production of catharanthus roseus for biotransfermation studies of (-)- caryophyllene oxide. Pakistan Journal of Botany, 43(1), 467-473.

  28. Schutzendubel, A. & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrizatio.Journal of Experimental Botany, 53(372), 1351-1365.

  29. Srivastava, S., Tripathi, R.D. & Dwivedi, U. N. (2004).Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa - an angiospermic parasite. Journal of plant physiology, 161(6), 665-674.

  30. Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985-999.

  31. van Doorn, W.G. & Woltering, E. J. (2005). Many ways to exit? Cell death categories in plants. Trends in Plant Science, 10(3), 117-122.

  32. Wajda, L., Kutemozinska, W. & Pilipowicz, M. (1989). Cadmium toxicity to plant callus culture in vitro-I. Modulation by zinc a dependence on plant species and callus line. Environmental and Experimental Botany, 29(3), 301-305.

  33. Zhao, Y. (2011).Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L.  African Journal of Biotechnology, 10 (15), 2936-2943.