بررسی تاثیر محرک‌های قارچی، باکتریایی، مخمر و نیترات‌نقره بر محتوای ترکیبات آنتی‌اکسیدانی و سیلیمارین در مراحل نموی مختلف گیاه خارمریم (Silybum marianum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه فارماکوگنوزی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

3 مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی جهاد دانشگاهی، کرج، ایران.

چکیده

گیاه خارمریم ((L.) Gaertn. Silybum marianum) به‌دلیل داشتن ویژگی‌های فیتوشیمیایی از فعالیت‌های بیولوژیک موثر شامل فعالیت‌های آنتی‌اکسیدانی و ضد سرطان برخوردار است و از این رو از دیرباز به‌عنوان یک گیاه دارویی با ارزش مورد توجه بوده‌است. مطالعه حاضر به‌منظور بررسی تاثیر محرک‌های زیستی شامل باکتری (Pseudomonas putida)، مخمر (Yarrowia lipolytica)،  قارچ (Aspergillus niger) و الیسیتورAgNO3  بر محتوای ترکیبات فنلی، سیلیمارین و پتانسیل آنتی‌اکسیدانی در بذر و بخش هوایی گیاه در مراحل رشد رویشی و زایشی به‌صورت آزمایش‌های جداگانه در قالب طرح کاملا تصادفی با 3 تکرار در گلخانه تحقیقاتی دانشکده علوم دانشگاه فردوسی مشهد انجام شد. نتایج آزمایش نشان داد که تحت تاثیر محرک‌های زیستی و غیر زیستی در هر دو مرحله‌‌ رشد رویشی و زایشی، محتوای فنل موجود در بذر بیشتر از بخش هوایی بود، این در حالی است که کمترین میزان IC50 در تمامی تیمارهای مورد بررسی به بذر اختصاص داشت. در این بررسی محتوای فلاونوئید کل با گذر از مرحله رویشی به زایشی و سپس تولید بذر کاهش یافت که احتمالا به افزایش تمایز سلولی در طول دوره تکمیل رشد، حفاظت در برابر حمله آفات، تجزیه و کاهش فعالیت آنزیم‌های مسیر بیوسنتزی مربوط می‌شود. اگرچهAgNO3  درصد سلیمارین را در مراحل رشد رویشی (96/9 درصد) و زایشی (64/6 درصد) نسبت به شاهد افزایش داد ولی در مرحله تولید بذر، تلقیح باکتری بیشترین تاثیر را در بهبود محتوای سیلیمارین داشت و مقدار سیلیمارین بذر را نسبت به شاهد به میزان 33 درصد افزایش داد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Fungal, Bacterial, Yeast and Silver Nitrate Elicitors on the Content of Antioxidant Compounds and Silymarin in Different Developmental Stages of Milk Thistle (Silybum marianum (L.) Gaertn.)

نویسندگان [English]

  • Elham Amjadi 1
  • Ali Ganjeali 1
  • Abolfazl Shakeri 2
  • Mehrdad Lahouti 1
  • Saeed Tavakoli 3
1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
3 Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
چکیده [English]

Silybum marianum exhibits significant biological activities, such as antioxidant and anticancer effects, attributed to its phytochemical properties. Hence, it has long been considered a valuable medicinal plant. The purpose of this study was to investigate the effect of biological stimuli, including bacteria (Pseudomonas putida), yeast (Yarrowia lipolytica), fungi (Aspergillus niger), and AgNO3, elicitors, on the contents of phenolic compounds, silymarin and antioxidant potential in the seeds and aerial parts of plant during the vegetative and reproductive growth stages. This study was conducted as separate experiments in a completely randomized design with 3 repetitions in the research greenhouse of Ferdowsi University of Mashhad. The results of the experiment revealed that the content of phenolic compounds in the seeds of plants treated with bio and non-bio stimulants was greater than that found in the aerial parts in both the vegetative and reproductive growth stages, whereas the lowest IC50 was assigned to the seeds in all the investigated treatments. In this study, the total flavonoid content decreased as the plant progressed from the vegetative stage to the reproductive stage and seed production. This decline is probably associated with the increase in cell differentiation during the period of growth, as well as the mechanisms for protection against pest attack, degradation, and a reduction in the activity of enzymes involved in biosynthetic pathways. Although AgNO3 increased the silymarin percentage in both the vegetative (9.96%) and reproductive stages (6.64%) in comparison to the control, it was bacterial inoculation that had the most significant impact on increasing the silymarin content in the seed production stage, resulting in a 33% increase in silymarin content relative to the control.

کلیدواژه‌ها [English]

  • free radical
  • phenolic compounds
  • phenology
  • silymarin

Extended Abstract

Introduction

     The milk thistle (Silybum marianum (L.) Gaertn.) contains silymarin, a flavonolignan found in its seeds, which is used for the treatment of liver, digestive, biliary, and poisoning diseases. Elicitors are substances that can boost the synthesis of secondary metabolites in plants by activating defense mechanisms. Aspergillus niger is known as the main source of citric acid production, Pseudomonas putida can produce significant quantities of organic acids through the decomposing organic substances in the soil and subsequently providing more phosphorus in the soil for absorption by plants. The yeast Yarrowia lipolytica is recognized as the host of naringenin biosynthesis, which serve as a precursor in the synthesis of flavonoids. Silver nitrate enhances the expression of certain genes and various intracellular enzymes by inhibiting ethylene activity, thereby affecting the synthesis of secondary metabolites in plants. Considering the importance of milk thistle as a medicinal plant, this research was undertaken to explore the potential for enhancing the production of medicinal compounds, particularly silymarin and antioxidant compounds, through the application of various biotic and abiotic elicitors at different phenological stages.

                                                                                                                                                                             

Materials and methods

Twenty-day-old seedlings of milk thistle cultivated in sterile soil in a greenhouse were subjected to four different treatments. These included Pseudomonas putida, Yarrowia lipolytica, each at a concentration of 0.5 McFarland standards, approximately 1.5×108 bacteria or yeast, and Aspergillus niger at a concentration of 1.2 × 107 spores per ml. These treatments were added to the rhizosphere in a volume of 10 ml. Additionally, silver nitrate treatment (at a concentration of 100 ppm) was applied through leaf spraying during both vegetative and reproductive stages. The plants aerial parts were collected at two stages namely vegetative and reproductive stages as well as seeds to examine their biochemical characteristics. A methanolic extract prepared by dissolving 1 g of plant powder in 10 ml of 80% methanol to assess the total phenol, flavonoid, phenolic acid content, IC50, as well as silymarin content.

 

Results and Discussion

The results revealed that the highest content of total phenol in the areal parts at vegetative stage was attributed to the application of silver nitrate (5.33 mg GAE g-1 DW), whereas in the reproductive stage, the highest content was associated with the control treatment (5.11 mg GAE g-1 DW). Furthermore, in seeds, the highest level was obtained through the use of yeast (12.94 mg GAE g-1 DW). The maximum content of flavonoids during the vegetative stage was linked to silver nitrate (5.5 mg QE g-1 DW), while in the reproductive stage it was related to fungi application (3.4 mg QE g-1 DW), and in the seeds, was belonged to yeast application (4.5 mg QE g-1 DW). The highest content of phenolic acid in the vegetative stage (2.73 mg CEA g-1 DW) was related to the application of bacteria, and in the reproductive stage, it was related to fungi (1.62 mg CEA g-1 DW), and in the seeds, it was attributed to yeast (3.5 mg CEA g-1 DW). The studied bio stimulants are sources for citric acid production and are able to produce and accumulate phenolic and flavonoids compounds within the vacuole, thereby enhancing antioxidant activity. Certain heavy metals, such as silver nitrate, protect plants against oxidative damage by the promoting of phenolic compound synthesis, mitigating free radical damage and improving the compatibility of plants with their environment.

The highest antioxidant activity and value of DPPH (IC50) were obtained in both the vegetative (85.99 µg ml-1) and reproductive stages (65.45 µg ml-1) using silver nitrate trearment, while in seed production stage (37.54 µg ml-1) was assigned to yeast treatment. By changing the plasma membrane, yeast can synthesize secondary metabolites and activate a defensive response against reactive oxygen species. ‌.

The application of silver nitrate resulted in the highest synthesis of silymarin in the aerial parts of the plant during both the vegetative (9.96%) and reproductive (6.64%) stages. Furthermore, the application of bacteria significantly enhanced the silymarin content in the seeds. Heavy metals bind to receptors on the surface of the plasma membrane, initiate a network of signal transmissions and cause the overexpression of all genes involved in the synthesis of secondary metabolites, including silymarin. Bacteria, as external producers of auxin and gibberellin hormones, induce flavonoid synthesis pathway, which in turn promotes the synthesis of taxifolin and silymarin. Yeast increases the synthesis of phenylalanine, as a precursor in the silymarin synthesis pathway.

 

Conclusion

The results indicated that the total phenol content of aerial parts of plant increased from the vegetative to the reproductive stage and subsequently in the seed; however, it was different for total flavonoid content. It seems that elicitors have diverse effects on various stages of plant growth, attributable to their specific roles in the biosynthetic pathways of different compounds.

 

Author Contributions

  1. Amjadi: Conceptualization, Investigation, Formal analysis & Writing - original draft. A. Ganjeali: Conceptualization, Investigation, Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Final approval of the article. A. Shakeri: Methodology, Writing - original draft & editing. M. Lahoti: Investigation, Methodology. S. Tavakoli: Investigation, Methodology.

 

Data Availability Statement

All data supporting the findings of this study are available within the paper and are available from the corresponding author on reasonable request.

 

Acknowledgements

We sincerely thank all individuals who provided technical assistance during the execution of this project.

We are special thankful from Ferdowsi University of Mashhad, Ministry of Science, Research, and Technology, Iran to financial support (grant no. 3/55205).

We are grateful to I. R of the Iran Meteorogicat Organization for providing the meteorological data and the Academic Center of Education, Culture and Research (ACECR) for the analysis and processing of the medicinal plants.

 

 

Ethical considerations

This article does not contain any studies involving human and animal subjects. The authors avoided data fabrication, falsification, plagiarism and misconduct.

 

Conflict of interest

The corresponding author declare that there is no Conflict of interest.

منابع

حسنلو، طاهره؛ احمدی، معصومه؛ خیام نکویی، سید مجتبی و صالحی جوزانی، غلامرضا (1392). اثرات تحریکی عصاره قارچی بر تولید سیلیمارین در کشت ریشه‌های مویین گیاه دارویی خار مریم (Silybum marianum L.).
حسنلو، طاهره؛ اسکندری، سحر و نجفی، فرزانه (1394). نقش کیتوزان در افزایش تولید فلاونولیگنان‌ها در کشت ریشه‌های مویین خارمریم (Silybum marianum L.). مجله سلول و بافت، 6(3)، 267- 257. http://dx.doi.org/10.52547/JCT.6.3.257
سروری، سوفیا و باقریان لمراسکی، حسن (1399). مطالعه تاثیر محلول پاشی اسپرمیدین، اسیدسیتریک و پرولین بر رشد و گلدهی همیشه بهار (Calendula officinalis L.) تحت تنش خشکی. فصلنامه گیاه و زیست فناوری ایران، 15(4)، 39-27.
 
RERERENCES
Akowuah, G. A., Ismail, Z., Norhayati, I. & Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93(2), 311–317. http://dx.doi.org/10.1016/j.foodchem.2004.09.028
Anastassiadis, S., Morgunov, I. G., Kamzolova, S. V. & Finogenova, T. V. (2008). Citric acid production patent review. Recent Patents on Biotechnology, 1923, 107–123. http://dx.doi.org/10.2174/187220808784619757.
Asghari-Zakaria, R., Panahi, A. R. & Sadeghizadeh, M. (2008). Comparative study of chromosome morphology in Silybum marianum. Cytologia, 73(3), 327–332. http://dx.doi.org/10.1508/cytologia.73.327
Ashtiani, S. R., Hasanloo, T. & Bihamta, M. R. (2010). Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharmaceutical Biology, 48(6), 708–715. http://dx.doi.org/10.3109/13880200903264426
Blume, B., Nurnberger, T., Nass, N. & Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12(8), 1425–1440. http://dx.doi.org/10.1105/tpc.12.8.1425
Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary c. Journal of Food and Drug Analysis, 10(3), 178–182. http://dx.doi.org/10.38212/2224-6614.2748
Chen, R., Xue, G., Chen, P., Yao, B., Yang, W., Ma, Q., Fan, Y., Zhao, Z., Tarczynski, M. C. & Shi, J. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17(4), 633–643. http://dx.doi.org/10.1007/s11248-007-9138-3
Coelho, M. A. Z., Amaral, P. F. F. & Belo, I. (2010). Yarrowai lipolytica: an industrial workhorse. Currient Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2,930–944.
Conforti, F., Statti, G., Uzunov, D. & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) Coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064. http://dx.doi.org/10.1248/bpb.29.2056
da Veiga Moreira, J., Jolicoeur, M., Schwartz, L. & Peres, S. (2021). Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Scientific Reports, 11(1), 1–11. http://dx.doi.org/10.1038/s41598-020-79577-4
del Baño, M. J., Lorente, J., Castillo, J., Benavente-García, O., Del Río, J. A., Ortuño, A., Quirin, K. W. & Gerard, D. (2003). Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. In Journal of Agricultural and Food Chemistry. 51(15). 4247–4253. http://dx.doi.org/10.1021/jf0300745
Elumalai, E. K., Prasad, T. N. V. K. V, Kambala, V., Nagajyothi, P. C. & David, E. (2010). Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Archives of Applied Science Research, 2(6), 76–81.
Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus l. and Rumex obtusifolius l. at different growth stages. Antioxidants, 8(7). http://dx.doi.org/10.3390/antiox8070237
Gad, D., Elhaak, M., Pompa, A., Mattar, M., Zayed, M., Fraternale, D. & Dietz, K. J. (2020). A new strategy to increase production of genoprotective bioactive molecules from cotyledon-derived Silybum marianum l. Callus. Genes, 11(7), 1–14. http://dx.doi.org/10.3390/genes11070791
Georgieva, G., Nedeva, T., Badalova, M., Deleva, V. & Savov, V. (2023). Study of the plant growth-promoting capacity of Pseudomonas putida 1046 in a model plant system. BioRisk, 20, 115–128. http://dx.doi.org/10.3897/ biorisk, 20, 115-128
Gupta, K. M. & R. G. (2012). Effect of Various Media Types on the Rate of Growth of. Indian Journal of Fundamental and Applied Life Sciences ISSN:, 2(2), 141–144.
Hao, Y. J., An, X. L., Sun, H. D., Piao, X. C., Gao, R. & Lian, M. L. (2020). Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules. Industrial Crops and Products, 150, 112414. http://dx.doi.org/10.1016/j.indcrop.2020.112414.
Hasanlo, T., Khavari Nejad, R. A., Majidi, E. & Shams Ardakani, M. R. (2008). Flavonolignan production in cell suspension culture of Silybum marianum. Pharmaceutical Biology, 46(12), 876–882. http://dx.doi.org/10.1080/13880200802367684
Hazrati, S., Mollaei, S., Rabbi Angourani, H., Hosseini, S. J. & Sedaghat, M. (2020) How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages? Food Science & Nutrition, 8(11), 6192-6206. Tabriz,. http://dx.doi.org/10.1002/fsn3.1916.
Humbal, A. & Pathak, B. (2023). Influence of exogenous elicitors on the production of secondary metabolite in plants: A review ( “VSI: secondary metabolites”). Plant Stress, 100166. http://dx.doi.org/10.1016/j.stress.2023.100166.
Jaberian, H., Piri, K. & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244. http://dx.doi.org/10.1016/j.foodchem.2012.07.084
Karla. Y. (1998). handbook of reference methods for plant analysis. 320 pp. CRC Press. http://dx.doi.org/10.2135/cropsci1998.0011183x003800060050x
Khalili, M., Hasanloo, T. & Tabar, S. K. K. (2010). Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics, 3(4), 109–114.
Kurkin, V. A. (2003). Medicinal plants: Saint-Mary thistle - a source of medicinals (a review). Pharmaceutical Chemistry Journal, 37, 189–202. http://dx.doi.org/10.1023/A:1024782728074
Lam, V. P., Beomseon, L., Anh, V. K., Loi, D. N., Kim, S., Kwang-ya, L. & Park, J. (2023). Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon, 9(9). http://dx.doi.org/10.1016/j.heliyon.2023.e20205
Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S. & Liu, S. (2020). Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 44, 107630. http://dx.doi.org/10.1016/j.biotechadv.2020.107630
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J. & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100–111. http://dx.doi.org/10.1080/17429145.2018.1436199
Lv, Y., Marsafari, M., Koffas, M., Zhou, J. & Xu, P. (2019). optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synthetic Biology, 8(11), 2514–2523. http://dx.doi.org/10.1021/acssynbio.9b00193
Maina, S., Ryu, D. H., Bakari, G., Misinzo, G., Nho, C. W. & Kim, H. Y. (2021). Variation in phenolic compounds and antioxidant activity of various organs of african cabbage (Cleome gynandra l.) accessions at different growth stages. Antioxidants, 10(12). http://dx.doi.org/10.3390/antiox10121952
Marceddu, R., Dinolfo, L., Carrubba, A., Sarno, M. & Di Miceli, G. (2022). Milk thistle (Silybum Marianum L.) as a Novel multipurpose crop for agriculture in marginal environments: a review. Agronomy, 12(3). http://dx.doi.org/10.3390/agronomy12030729
Matkowski, A., Zielińska, S., Oszmiański, J. & Lamer-Zarawska, E. (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technology, 99(16), 7892–7896. http://dx.doi.org/10.1016/j.biortech.2008.02.013
Medina, A., Roldán, A. & Azcón, R. (2010). The effectiveness of Arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of Environmental Management, 91(12), 2547–2553. http://dx.doi.org/10.1016/j.jenvman.2010.07.008
Moradi, H., Ghavam, M. & Tavili, A. (2020). Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnology Reports, 25, e00408. http://dx.doi.org/10.1016/j.btre.2019.e00408
Muhammad, A., Feng, X., Rasool, A., Sun, W. & Li, C. (2020). Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 43, 107555. http://dx.doi.org/10.1016/j.biotechadv.2020.107555
Omezzine, F. & Haouala, R. (2013). Effect of Trigonella foenum-graecum L. development stages on some phytochemicals content and allelopathic potential. Scientia Horticulturae, 160, 335–344. http://dx.doi.org/10.1016/j.scienta.2013.06.023
Palmer, C. M., Miller, K. K., Nguyen, A. & Alper, H. S. (2020). Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 57, 174–181. http://dx.doi.org/10.1016/j.ymben.2019.11.006
Pérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodríguez, J. C., Mayek-Pérez, N. & Chávez-Servia, J. L. (2023). Effects of annual growth conditions on phenolic pompounds and antioxidant activity in the roots of eryngium montanum. Plants, 12(18), 1–15. http://dx.doi.org/10.3390/plants12183192
Premanath, R., Sudisha, J., Devi, N. L. & Aradhya, S. M. (2011). Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. In Research Journal of Medicinal Plant. 5(6).  695–705. http://dx.doi.org/10.3923/rjmp.2011.695.705
Qavami, N., Naghdi Badi, H., Labbafi, M. R. & Mehrafarin, A. (2013). A review on pharmacological, cultivation and biotechnology aspects of milk thistle (Silybum marianum (L.) Gaertn.). Journal of Medicinal Plants, 12(47), 19–37.
Rahimi, S., Hasanloo, T., Najafi, F. & Khavari Nejad, R. A. (2011). Enhancement_of_silymarin_accumulation_using_Precursor feeding in 'Silybum marianum' hairy root cultures. Plant Omics, 4(1), 34–39.
Rainone, F. (2005). Milk thistle - American Family Physician. 72(7), 1285–1288. http://www.aafp.org/afpsort.xml.
Saffaryazdi, A., Ganjeali, A., Farhoosh, R. & Cheniany, M. (2020). Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7), 1519–1529. http://dx.doi.org/10.1007/s12298-020-00836-9
Schrall, R. & Becker, H. (1977). Callus– und suspensionskulturen von Silybum Marianum. Planta Medica, 32(5), 27–32. http://dx.doi.org/10.1055/s-0028-1097554
Shokati, B. & Poudineh, Z. (2017). An overview of plant growth promoting rhizobacteria and their influence on essential oils of medicinal plants. Iranian Journal of Plant Physiology, 7(3), 2051–2061. http://dx.doi.org/10.22034/ijpp.2017.533559
Simpson, C. A., Geornaras, I., Yoon, Y., Scanga, J. A., Kendall, P. A., Sofos, J. N. & Dalynn Biologicals. (2014). McFarland Srandard. Journal of Food Protection, 71(3), 2. http://dx.doi.org/10.4315/0362-028x-71.3.494
Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.  http://dx.doi.org/10.1016/S0076-6879(99)99017-1
Sneath, P. H. A. (1973). Numerical taxonomy: the principles and practice of numerical classification.573 pp. San Francisco, Freeman.
Soroori, S., & Bagherian Lemraski, H. B. (2021). Effect of foliar application of spermidine , citric acid and proline on growth and flowering in Calendula officinalis L . under drought stress. Iranian Journal of Plant and Biotechnology, 15(4). http://dx.doi.org/10.22059/ijhst.2022.341462.555
Stamford, N. P., Freitas, A. D. S., Ferraz, D. S. & Santos, C. E. R. S. (2002). Effect of sulphur inoculated with Thiobacillus on saline soils amendment and growth of cowpea and yam bean legumes. The Journal of Agricultural Science, 139(3), 275–281. http://dx.doi.org/10.1017/S0021859602002599
Sultana, B., Anwar, F. & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167–2180. doi: 10.3390/molecules14062167
Sun, J., Li, X. & Yu, X. (2016). Antioxidant activities, total flavonoids and phenolics content in different parts of Silybum marianum L. plants. Chemical Engineering Transactions, 55, 37–42. doi: 10.3303/CET1655007.
Tong, Z., Tong, Y., Wang, D. & Shi, Y. C. (2023). Whole maize flour and isolated maizestarch for production of citric acid by Aspergillus niger: a review. Starch/Staerke, 75(3–4), 1–11. http://dx.doi.org/10.1002/star.202000014.
Tripathi, D. K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., Upadhyay, R. G., Dubey, N. K., Lee, Y. & Chauhan, D. K. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology, 8, 1–16. http://dx.doi.org/10.3389/fmicb.2017.00007
Tůmová, L., Tůma, J., Megušar, K. & Doležal, M. (2010). Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) Gaertn cultures in vitro. Molecules, 15(1), 331–340. http://dx.doi.org/10.3390
Verma, V. & Kasera, P. K. (2007). Short communication variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian J. Plant Physiol.
Vildová, A. A., Hendrychová, H., Kubeš, J. & Tůmová, L. (2014). Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of silybum marianum (L .) Gaertn . 1(7), 2014.
Vinogradova, N., Vinogradova, E., Chaplygin, V., Mandzhieva, S., Kumar, P., Rajput, V. D., Minkina, T., Seth, C. S., Burachevskaya, M., Lysenko, D. & Singh, R. K. (2023). Phenolic compounds of the medicinal plants in an anthropogenically transformed environment. Molecules, 28(17). http://dx.doi.org/10.3390/molecules28176322
Wang, S. Y. & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146. http://dx.doi.org/10.1021/jf9908345
Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W. & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of Milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72. http://dx.doi.org/10.1124/dmd.107.017566
Zboralski, A. & Filion, M. (2023). Pseudomonas spp. can help plants face climate change. Frontiers in Microbiology, 14, 1–13. http://dx.doi.org/10.3389/fmicb.2023.1198131
Zhao, J. & Sakai, K. (2003). Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 54(383), 647–656. http://dx.doi.org/10.1093/jxb/erg062