تاثیر محلول‌پاشی نانو ذره سلنیوم بر ویژگی‌های ظاهری و بیوشیمیایی گیاه سرخارگل (Echinacea purpurea) تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 گروه تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه. ایران

چکیده

به منظور بررسی تاثیر محلول­پاشی نانو ذره سلنیوم بر کاهش اثر منفی تنش خشکی در گیاه سرخارگل (Echinacea purpurea 'Rose Carmine')، پژوهشی به­صورت کرت خرد شده در قالب طرح کاملا تصادفی با سه تکرار در گلخانه (مرحله نشا تا دو ماه) و سپس در زمین­های زراعی دانشکده کشاورزی دانشگاه ارومیه انجام شد. تیمارهای تنش خشکی (تیمار اصلی) بر اساس ظرفیت زراعی خاک و در چهار سطح 20، 40، 60 و 100 درصد ظرفیت مزرعه به روش سنجش رطوبت خاک در عمق ریشه و با استفاده از دستگاه تی‌دی‌آر اعمال شدند. تیمار نانو ذره سلنیوم (تیمار فرعی) نیز همزمان با اعمال سطوح مختلف تنش خشکی، بصورت محلول­پاشی برگی و در چهار سطح صفر (شاهد)، 5، 10 و 20 میلی­گرم در لیتر و با فواصل دو هفته­ای و در یک دوره سه ماهه اعمال گردید. نتایج نشان داد که بیشترین میزان انباشت پرولین (73/0 میکرومول بر گرم) در تیمار محلول­پاشی 20 میلی­گرم در لیتر نانوذره سلنیوم در شرایط تنش آبیاری 60 درصد ظرفیت زراعی، کمترین مقدار انباشت مالون­دی آلدهاید (8/0 نانومول بر گرم بافت تازه) در تیمار محلول­پاشی 5 میلی­گرم در لیتر نانوذره سلنیوم در شرایط تنش آبیاری 20 درصد ظرفیت زراعی و بیشترین میزان فعالیت آنزیم آسکوربات پراکسیداز (5/2 نانومول بر گرم بافت تازه)، در تیمار محلول­پاشی 20 میلی­گرم در لیتر نانوذره سلنیوم در شرایط تنش آبیاری 20 درصد ظرفیت زراعی مشاهده شد که اختلاف معناداری با نمونه شاهد نشان داد. براساس نتایج حاصل، محلول­پاشی نانو ذره سلنیوم تاثیر مثبتی در افزایش میزان تحمل گیاه سرخارگل در شرایط تنش داشت و در نتیجه عملکرد و صفات رشدی به­طور معنی­داری تحت تاثیر سطوح آبیاری و تیمار محلول­پاشی قرار گرفت. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of foliar application of selenium nanoparticles on the appearance and biochemical characteristics of Echinacea purpurea under drought stress

نویسندگان [English]

  • maryam rezagholi 1
  • Javad Rezapour Fard 2
  • Reza Darvishzadeh 3
1 Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
چکیده [English]

In order to evaluate the effect of selenium nanoparticles on alleviating the adversary influence of drought in Echinacea purpurea 'Rose Carmine cultivar', an experiment was planned in a split-plot based on a completely randomized design (RCD) with three replications. First, it was conducted under a greenhouse (for producing two-month seedlings) and then conducted in the farm of Agricultural Faculty of Uremia University. The treatments were as follows: drought stress as a main factor at different percentage of field capacity (FC), including 20, 40, 60, and 100% FC, and selenium nanoparticles (SNs) as sub-treatment at different concentrations including 0 or control, 5, 10, and 20 mg/l. In this context, the moisture content in the soil was measured by assessing soil moisture at the depth level of roots using a TDR device. In addition, the foliar spraying of SNs was simultaneously performed at different drought levels for a three-month period at a two-week interval. Results showed that the highest content of proline (0.73 µmol per g) was obtained by spraying 20 mg/l SNs at 60% FC. Furthermore, the lowest malondialdehyde accumulation (0.8 µmol/g of fresh tissue) was recorded in 5 mg/l SN at 20% FC, but the highest activity of ascorbate peroxidase (2/5 µmol/g of fresh tissue) was found in employing 20 mg/l of SNs under 20% FC. Both characteristics had a significant difference with those in the control. In conclusion, by influencing yield and vegetative growth indices of Echinacea purpurea, the foliar application of SN could improve the plant’s tolerance to drought.

کلیدواژه‌ها [English]

  • Abiotic stress
  • Antioxidant properties
  • Medicinal plant
  • Nano particles

Extended Abstract

Introduction

Echinacea purpurea, belonging to Asteraceae, has been widely cultivated in urban green space because of its ornamental and medicinal properties. Given the importance of Echinacea purpurea in terms of ornamental and medicinal aspects as well as the existence of different global concern such as climate changes and water deficiency, there is an urgent need to utilize novel and efficient methods to induce plants tolerance to drought stress. In this regard, selenium nanoparticles SNs, a useful element in plant nutrition, can contribute to plants for tolerating various environmental stresses such as drought. Therefore, this study aimed to investigate the effect of SNs on mitigating the deleterious impact of drought stress on Echinacea purpurea 'Rose Carmine'.

 

Materials and Methods

The adequate-growing seedlings of the 'Rose Carmine' cultivar were transferred to a farm in the research greenhouse of Urmia University. Drought stress was applied based on the soil field capacity (FC) at four levels (20, 40, 60 and 100% FC) by measuring the soil moisture at the root depth using a TDR device. SNs treatment were applied at four levels including 0 (control), 5, 10 and 20 mg/l in form of foliar spraying at a two-week interval and in a three-month period, corresponded with employing drought treatments. The experiment was planned in a split plot based on a completely randomized design (CRD) with three replications. After flowering, the samples were collected and the traits were then measured. Analysis of variance and mean comparison were done using SAS software and Duncan's multiple range test, respectively.

 

Results and Discussion

In this study, the highest activity of ascorbate peroxidase was observed in the 20 mg/l SNs under 20% FC, differed significantly with those in the control. This may be attributed to selenium role in augmenting antioxidant activity, plant metabolic efficiency, and nutrient uptake and availability.

Additionally, the lowest accumulation of malondialdehyde (MDA) was observed in the 5 mg/l SNs under 20% FC. In general, MDA accumulation in plants is considered as a sign of lipid peroxidation or oxidative damage, intensified by a stressful condition. Therefore, a reduction in MDA accumulation in plants indicates their tolerance to drought and its harmful effects. The lowest MDA was recorded in 5 mg/l SNs under the severe drought stress, suggesting the efficiency of SNs on reduction of the damages caused by oxidative stress. Additionally, the highest activity of the guaiacol peroxidase was recorded in 20 mg/l SNs at 40% FC. In our study, SNs could improve the plant defense system against free radicals and reduce the rate of cellular damage.

 

Conclusion

According to the findings of this research, it can be concluded that foliar spraying of SNs could increase the resistance of the Echinacea purpurea and induce its tolerance to drought stress. We have shown that SNs could improve antioxidant defense system of plants, decrease lipid peroxidation, regulate plant metabolism, and enhance metabolic efficiency in plants.

 

Author Contributions

  1. Nazeri, M. Shokrpour and L. Tabrizi conceived and planned the experiments. M. Raoof carried out the experiments. M. Shokrpour and M. Raoof analyzed data. M. Raoof and V. Nazeri wrote the first manuscript. V. Nazeri, M. Shokrpour and L. Tabrizi contributed to the interpretation of the results. All authors provided critical feedback and helped shape the research, analysis and manuscript.

 

Data Availability Statement

Data available on request from the authors.

 

Acknowledgements

The authors would like to thank the research council of the University of Tehran, Iran for the financial support of this research.

 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

 

Conflict of interest

     The author declares no conflict of interest.

REFERENCES
Abdoli, M, Moieni, A. & Naghdi Badi, H. (2013). Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiologiae Plantarum, 35, 2075–2083. https://doi.org/10.1007/s11738-013-1242-9
Al-Deriny, S. H., Dawood, M. A., Elbialy, Z. I., El-Tras, W. F., Mohamed, R. A. (2020). Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile tilapia (Oreochromis niloticus). Biological Trace Elements Research, 19, 661–668. https://doi.org/10.1007/s12011-020-02096-w
Allen, D. J., Mckee, I. F., Farage, P. K. & Baker, N. R. (1997). Analysis of the limitation to CO2 assimilation to exposure of leaves of two Brassica napus cultivars to UV-B. Plant, Cell & Environment, 20(5), 633–640. https://doi.org/10.1111/j.1365-3040.1997.00093.x
Asghari, J., Mahdavikia, H., Rezaei-Chiyaneh, E., Banaei-Asl, F., Amani Machiani, M. & Tom Harrison, M. (2023). Selenium Nanoparticles Improve Physiological and Phytochemical Properties of Basil (Ocimum basilicum L.) under Drought Stress Conditions. Land, 12(1), 164. https://doi.org/10.3390/land12010164
Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M. & Salehi, A. (2020). Improving growth and phenolic compounds of Echinacea purpurea root by integrating biological and chemical resources of phosphorus under water deficit stress. Industrial Crops and Products, 154, 112763. https://doi.org/10.1016/j.indcrop.2020.112763
Babashpour-Asl, M., Farajzadeh Memari Tabrizi, E. & Yousefpour-Dokhanieh, A. (2022). Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. Environmental Science and Pollution Research, 29(53), 80021-80031. https://doi.org/10.1007/s11356-022-19941-1
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
Bhagyawant, S. S., Narvekar, D. T., Gupta, N., Bhadkaria, A., Koul, K. K. & Srivastava, N. (2019). Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiology and Mololecular Biology of Plants, 25(3), 683–696. https://doi.org/10.1007/s12298-019-00667-3
Bruni, R., Brighenti, V., Caesar, L. K., Bertelli, D., Cech, N. B. & Pellati, F. (2018). Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. Journal of Pharmaceutical and Biomedical Analysis, 160, 443–477. https://doi.org/10.1016/j.jpba.2018.07.044
Djanaguiraman, M., Belliraj, N., Bossmann, S. H. & Prasad, P.V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 3(3), 2479–2491. https://doi.org/10.1021/acsomega.7b01934
El Lateef Gharib, F. A., Zeid, I. M., Ghazi, S. M. & Ahmed, E. Z. (2019). The response of cowpea (Vigna unguiculata L) plants to foliar application of sodium selenate and selenium nanoparticles (SeNPs). Journal of Nanomaterials & Molecular Nanotechnology, 8(4). http://dx.doi.org/10.4172/2324-8777.1000272
Furlan, A. L., Bianucci, E., Giordano, W., Castro, S. & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151, 566–578. https://doi.org/10.1016/j.plaphy.2020.04.010
Ghasemian, S., Masoudian, N., Saeid Nematpour, F. & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76, 2879–2888. https://doi.org/10.1007/s11756-021-00854-2
Ghazi, D. A. (2018). The contribution of nano-selenium in alleviation of salinity adverse effects on coriander plants. Journal of Soil Sciences and Agricultural Engineering, 9(12), 753-760. http://dx.doi.org/10.21608/jssae.2018.36530
Haghighi, M., Abolghasemi, R. & da Silva, J. A. T. (2014). Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Scientia Horticulturae, 178, 231–240. https://doi.org/10.1016/j.scienta.2014.09.006
Harborne, J. B. & Williams, C. A. (2004). Phytochemistry of the genus Echinacea. In S. C. Miller & H. Yu, (Eds.), Echinacea: the genus Echinacea (medicinal and aromatic plants - industrial profiles), pp 55-71. CRC Press.
Hashmat, S., Shahid, M., Tanwir, K., Abbas, S., Ali, Q., Niazi, N. K., Akram, M. S., Saleem, M. H. & Javed, M.T. (2021). Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater. Agricultural Water Management, 247, 106720. https://doi.org/10.1016/j.agwat.2020.106720
Hernández, J. A. &  Almansa, M. (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 115(2), 251-257. http://dx.doi.org/10.1034/j.1399-3054.2002.1150211.x
Ikram, M., Javed, B., Raja, N.I., Mashwani, Z.u.R. (2021). Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine. 16, 249-268. https://doi.org/10.2147/IJN.S295053
Javanmard, A., Ashrafi, M., Morshedloo, M. R., Machiani, M. A., Rasouli, F. & Maggi, F. (2022). Optimizing phytochemical and physiological characteristics of Balangu (Lallemantia iberica) by foliar application of chitosan nanoparticles and myco-root inoculation under water supply restrictions. Horticulturae, 8(8), 695. https://doi.org/10.3390/horticulturae8080695
Kang, H. M. & Saltiveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling (leaves and roots) and differentially affected by salicylic acid. Physiologia Plantarum, 115(4), 571-576. http://dx.doi.org/10.1034/j.1399-3054.2002.1150411.x
Kiumarzi, F., Morshedloo, M. R., Zahedi, S. M., Mumivand, H., Behtash, F., Hano, C., Chen, J. T. & Lorenzo, J. M. (2022). Selenium nanoparticles (Se-NPs) alleviates salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants, 1(10), 1384. https://doi.org/10.3390/plants11101384
Kumar, A., Gupta, K., Dixit, S., Mishra, K. & Srivastava, S. (2019). A review on positive and negative impacts of nanotechnology in agriculture. International Journal of Environmental Science and Technology, 16, 2175–2184. https://doi.org/10.1007/s13762-018-2119-7
Mac Adam, J. W., Nelson, C. J. & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology, 99(3), 872–878. http://dx.doi.org/10.1104/pp.99.3.879
Malheiros, R. S., Costa, L. C., Ávila, R. T., Pimenta, T. M., Teixeira, L. S., Brito, F. A. &  Zsögön, A. (2019). Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta, 250(1), 333–345. https://link.springer.com/article/10.1007/s00425-019-03175-6
Mehrpooya, Z., Abdoli, M. & Talebian, M. R. (2021). Effect of salicylic acid and yeast extract on caffeic acid derivatives production in Echinacea purpurea L. Journal of Medicinal Plants, 20(78), 36-47. http://dx.doi.org/10.52547/jmp.20.78.36
Merwad, A. R. M. A., Desoky, E. S. M. & Rady, MM. (2018). Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228(3), 132-144.  http://dx.doi.org/10.1016/j.scienta.2017.10.008
Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Hussain, R.A. (2017). Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions. The Journal of Agricultural Science, 155, 643–656. https://doi.org/10.1017/S0021859616000836
Neysanian, M., Iranbakhsh, A., Ahmadvand, R., OraghiArdebili, Z. & Ebadi, M. (2020). Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE, 15, e0244207.  https://doi.org/10.1371/journal.pone.0244207
Ostadi, A., Javanmard, A., Amani Machiani, M., Sadeghpour, A., Maggi, F., Nouraein, M., Morshedloo, M. R., Hano, C. & Lorenzo, J. M. (2022). Co-application of TiO2 nanoparticles and arbuscular mycorrhizal fungi improves essential oil quantity and quality of sage (Salvia officinalis L.) in drought stress conditions. Plants, 11(13), 1659. https://doi.org/10.3390/plants11131659
Parsons, J. L., Cameron, S. I., Harris, C. S. & Smith, M. L. (2018). Echinacea biotechnology: advances, commercialization and future considerations. Pharmaceutical Biology, 56(1), 485–494. https://doi.org/10.1080/13880209.2018.1501583
Pereira, G. A., Gerolis, L. G. L., Gonçalves, L. S., Pedrosa T. A. & José Neve, M. (2018). Selenized Saccharomyces cerevisiae cells are a green dispenser of nanoparticles. Journal of Biomedical Physics & Engineering Express, 4(3), 035028. doi:10.1088/2057-1976/aab524
Rady, M. M., Belal, H. E., Gadallah, F. M. & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290. https://doi.org/10.1016/j.scienta.2020.109290
Ragavan, P., Ananth, A. & Rajan, M. R. (2017). Impact of selenium nanoparticles on growth, biochemical characteristics and yield of cluster bean Cyamopsis tetragonoloba. International Journal of Environment, Agriculture and Biotechnology, 2(6), 2917-2926.  https://dx.doi.org/10.22161/ijeab/2.6.19
Rezaei Nazari, M., Abdossi, V., Zamani Hargalani, F. & Larijani, K. (2021). The response of Hypericum perforatum L. to the application of selenium and nano-selenium. Research Square, 1-9. https://doi.org/10.21203/rs.3.rs-708123/v1
Samynathan, R., Venkidasamy, B., Shanmugam, A., Sathishkumar Ramalingam, S. & Thiruvengadam, M. (2023). Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Frontiers in Genetics, 14:1272446. http://dx.doi.org/10.3389/fgene.2023.1272446
Sardari, M., Rezayian, M. & Niknam, V. (2022). Comparative Study for the effect of selenium and nano-selenium on wheat plants grown under drought stress. Russian Journal Plant Physiology, 69(6) 127. https://doi.org/10.1134/S102144372206022X
Schiavon, M., Ertani, A., Parrasia, S. & Dalla Vecchia, F. (2017). Selenium accumulation and metabolism in algae. Aquatic toxicology, 189, 1-8.  https://doi.org/10.1016/j.aquatox.2017.05.011
Seliem, M. K., Hafez, Y. & El-Ramady, H. (2020). Using nano-selenium in reducing the negative effects of high temperature stress on Chrysanthemum morifolium Ramat. Journal of Sustainable Agricultural Sciences, 46(3), 47–60. https://doi.org/10.21608/jsas.2020.23905.1203
Shahraki, B., Bayat, H., Aminifard, M. H. & Azarmi Atajan, F. (2022).  Effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (Calendula officinalis L.) under salinity stress conditions. Journal of Communications in Soil Science and Plant Analysis, 53(20), 2749-2765. https://doi.org/10.1080/00103624.2022.2089679
Tahmasebi, A., Ebrahimie, E., Pakniyat, H., Ebrahimi, M. & Mohammadi-Dehcheshmeh, M. (2019). Tissue-specific transcriptional biomarkers in medicinal plants: application of large-scale meta-analysis and computational systems biology. Gene, 691, 114–124. https://doi.org/10.1016/j.gene.2018.12.056
Tavakoli, S., Enteshari, S. & Yousefifard, M. (2020). Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in Melissa officinalis. Iranian Journal of Plant Physiology, 10(2), 3125-3134. https://doi.org/10.30495/ijpp.2020.672572
Thygesen, L., Thulin, J., Mortensen, A. & Skibsted, L. (2007). Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chemistry, 101(1), 74-81. https://doi.org/10.1016/j.foodchem.2005.11.048
Valentovic, P., Luxova, M., Kolarovi, L. & Gasparikora, O. (2006). Effect of osmotic stress on compatible solutes content, memberane stability and water relations in two maize cultivars. Plant, Soil and Environment, 52(4), 186-191.  http://dx.doi.org/10.17221/3364-PSE
Wagner, G. J. (1979). Content and vacuole extra vacuole distribution of neutral sugars, free amino acids and anthocyanins in protoplasts. Plant Physiology, 64(1), 88-93. https://doi.org/10.1104/pp.64.1.88
Wang, Y., Rao, C., Huang, L., Wu, J., Sun, P., Zhan, J., Wu, J., Liu, S., Zhou, C., Hu, L., Li, N., Chen, J. & He, X. (2024). Effects of organic selenium and nanoselenium on drought stress of pak choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) and Its Transcriptomic Analysis. Agronomy, 14(1), 78. https://doi.org/10.3390/agronomy14010078
Zahedi, S. M., Moharrami, F., Sarikhani, S. & Padervand, M. (2020). Selenium and silica nanostructure‑based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10, 17672. https://doi.org/10.1038/s41598-020-74273-9
Zhao, X., Zhao, Q., Chen, H. & Xiong, H. (2019). Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress Food Chemistry, 272, 201-209. https://doi.org/10.1016/j.foodchem.2018.08.039