REFERENCES
Abdoli, M, Moieni, A. & Naghdi Badi, H. (2013). Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of
Echinacea purpurea (L.).
Acta Physiologiae Plantarum, 35, 2075–2083.
https://doi.org/10.1007/s11738-013-1242-9
Al-Deriny, S. H., Dawood, M. A., Elbialy, Z. I., El-Tras, W. F., Mohamed, R. A. (2020). Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile tilapia (
Oreochromis niloticus).
Biological Trace Elements Research, 19, 661–668. https://doi.org/
10.1007/s12011-020-02096-w
Allen, D. J., Mckee, I. F., Farage, P. K. & Baker, N. R. (1997). Analysis of the limitation to CO
2 assimilation to exposure of leaves of two
Brassica napus cultivars to UV-B.
Plant, Cell & Environment, 20(5), 633–640.
https://doi.org/10.1111/j.1365-3040.1997.00093.x
Asghari, J., Mahdavikia, H., Rezaei-Chiyaneh, E., Banaei-Asl, F., Amani Machiani, M. & Tom Harrison, M. (2023). Selenium Nanoparticles Improve Physiological and Phytochemical Properties of Basil (
Ocimum basilicum L.) under Drought Stress Conditions.
Land, 12(1), 164.
https://doi.org/10.3390/land12010164
Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M. & Salehi, A. (2020). Improving growth and phenolic compounds of
Echinacea purpurea root by integrating biological and chemical resources of phosphorus under water deficit stress.
Industrial Crops and Products, 154, 112763.
https://doi.org/10.1016/j.indcrop.2020.112763
Babashpour-Asl, M., Farajzadeh Memari Tabrizi, E. & Yousefpour-Dokhanieh, A. (2022). Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (
Coriandrum sativum L.) leaves.
Environmental Science and Pollution Research,
29(53), 80021-80031.
https://doi.org/10.1007/s11356-022-19941-1
Bhagyawant, S. S., Narvekar, D. T., Gupta, N., Bhadkaria, A., Koul, K. K. & Srivastava, N. (2019). Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea.
Physiology and Mololecular Biology of Plants, 25(3), 683–696.
https://doi.org/10.1007/s12298-019-00667-3
Bruni, R., Brighenti, V., Caesar, L. K., Bertelli, D., Cech, N. B. & Pellati, F. (2018). Analytical methods for the study of bioactive compounds from medicinally used
Echinacea species.
Journal of Pharmaceutical and Biomedical Analysis,
160, 443–477.
https://doi.org/10.1016/j.jpba.2018.07.044
Djanaguiraman, M., Belliraj, N., Bossmann, S. H. & Prasad, P.V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum.
ACS Omega, 3(3), 2479–2491.
https://doi.org/10.1021/acsomega.7b01934
El Lateef Gharib, F. A., Zeid, I. M., Ghazi, S. M. & Ahmed, E. Z. (2019). The response of cowpea (
Vigna unguiculata L) plants to foliar application of sodium selenate and selenium nanoparticles (SeNPs).
Journal of Nanomaterials & Molecular Nanotechnology, 8(4).
http://dx.doi.org/10.4172/2324-8777.1000272
Furlan, A. L., Bianucci, E., Giordano, W., Castro, S. & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants.
Plant Physiology and Biochemistry, 151, 566–578.
https://doi.org/10.1016/j.plaphy.2020.04.010
Ghasemian, S., Masoudian, N., Saeid Nematpour, F. & Safipour Afshar, A. (2021). Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in
Melissa officinalis.
Biologia, 76, 2879–2888.
https://doi.org/10.1007/s11756-021-00854-2
Ghazi,
D. A. (2018). The contribution of nano-selenium in alleviation of salinity adverse effects on coriander plants
. Journal of Soil Sciences and Agricultural Engineering, 9(12), 753-760.
http://dx.doi.org/10.21608/jssae.2018.36530
Haghighi, M., Abolghasemi, R. & da Silva, J. A. T. (2014). Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment.
Scientia Horticulturae, 178, 231–240.
https://doi.org/10.1016/j.scienta.2014.09.006
Harborne, J. B. & Williams, C. A. (2004). Phytochemistry of the genus Echinacea. In S. C. Miller & H. Yu, (Eds.), Echinacea: the genus Echinacea (medicinal and aromatic plants - industrial profiles), pp 55-71. CRC Press.
Hashmat, S., Shahid, M., Tanwir, K., Abbas, S., Ali, Q., Niazi, N. K., Akram, M. S., Saleem, M. H. & Javed, M.T. (2021). Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of
Pisum sativum L. fertigated with diluted and treated wastewater.
Agricultural Water Management, 247, 106720.
https://doi.org/10.1016/j.agwat.2020.106720
Ikram, M., Javed, B., Raja, N.I., Mashwani, Z.u.R. (2021). Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine. 16, 249-268. https://doi.org/10.2147/IJN.S295053
Javanmard, A., Ashrafi, M., Morshedloo, M. R., Machiani, M. A., Rasouli, F. & Maggi, F. (2022). Optimizing phytochemical and physiological characteristics of Balangu (
Lallemantia iberica) by foliar application of chitosan nanoparticles and myco-root inoculation under water supply restrictions.
Horticulturae, 8(8), 695.
https://doi.org/10.3390/horticulturae8080695
Kiumarzi, F., Morshedloo, M. R., Zahedi, S. M., Mumivand, H., Behtash, F., Hano, C., Chen, J. T. & Lorenzo, J. M. (2022). Selenium nanoparticles (Se-NPs) alleviates salinity damages and improves phytochemical characteristics of pineapple mint (
Mentha suaveolens Ehrh.).
Plants, 1(10), 1384.
https://doi.org/10.3390/plants11101384
Kumar, A., Gupta, K., Dixit, S., Mishra, K. & Srivastava, S. (2019). A review on positive and negative impacts of nanotechnology in agriculture.
International Journal of Environmental Science and Technology, 16, 2175–2184.
https://doi.org/10.1007/s13762-018-2119-7
Mac Adam, J. W., Nelson, C. J. & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue.
Plant Physiology, 99(3), 872–878.
http://dx.doi.org/10.1104/pp.99.3.879
Malheiros, R. S., Costa, L. C., Ávila, R. T., Pimenta, T. M., Teixeira, L. S., Brito, F. A. &
Zsögön, A. (2019). Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture.
Planta, 250(1), 333–345.
https://link.springer.com/article/10.1007/s00425-019-03175-6
Mehrpooya, Z., Abdoli, M. & Talebian, M. R. (2021). Effect of salicylic acid and yeast extract on caffeic acid derivatives production in
Echinacea purpurea L.
Journal of Medicinal Plants, 20(78), 36-47.
http://dx.doi.org/10.52547/jmp.20.78.36
Merwad, A. R. M. A., Desoky, E. S. M. & Rady, MM. (2018). Response of water deficit-stressed
Vigna unguiculata performances to silicon, proline or methionine foliar application.
Scientia Horticulturae,
228(3), 132-144.
http://dx.doi.org/10.1016/j.scienta.2017.10.008
Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Hussain, R.A. (2017). Selenium supply methods and time of application influence spring wheat (
Triticum aestivum L.) yield under water deficit conditions.
The Journal of Agricultural Science, 155, 643–656.
https://doi.org/10.1017/S0021859616000836
Neysanian, M., Iranbakhsh, A., Ahmadvand, R., OraghiArdebili, Z. & Ebadi, M. (2020). Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment.
PLoS ONE, 15, e0244207.
https://doi.org/10.1371/journal.pone.0244207
Ostadi, A., Javanmard, A., Amani Machiani, M., Sadeghpour, A., Maggi, F., Nouraein, M., Morshedloo, M. R., Hano, C. & Lorenzo, J. M. (2022). Co-application of TiO
2 nanoparticles and arbuscular mycorrhizal fungi improves essential oil quantity and quality of sage (
Salvia officinalis L.) in drought stress conditions.
Plants, 11(13), 1659.
https://doi.org/10.3390/plants11131659
Parsons, J. L., Cameron, S. I., Harris, C. S. & Smith, M. L. (2018).
Echinacea biotechnology: advances, commercialization and future considerations.
Pharmaceutical Biology,
56(1), 485–494.
https://doi.org/10.1080/13880209.2018.1501583
Rady, M. M., Belal, H. E., Gadallah, F. M. & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in
Solanum lycopersicum plant by inducing the antioxidant defense system.
Scientia Horticulturae, 266, 109290.
https://doi.org/10.1016/j.scienta.2020.109290
Ragavan, P., Ananth, A. & Rajan, M. R. (2017). Impact of selenium nanoparticles on growth, biochemical characteristics and yield of cluster bean
Cyamopsis tetragonoloba.
International Journal of Environment, Agriculture and Biotechnology, 2(6), 2917-2926.
https://dx.doi.org/10.22161/ijeab/2.6.19
Rezaei Nazari, M., Abdossi, V., Zamani Hargalani, F. & Larijani, K. (2021). The response of
Hypericum perforatum L. to the application of selenium and nano-selenium.
Research Square, 1-9.
https://doi.org/10.21203/rs.3.rs-708123/v1
Sardari, M., Rezayian, M. & Niknam, V. (2022). Comparative Study for the effect of selenium and nano-selenium on wheat plants grown under drought stress.
Russian Journal Plant Physiology, 69(6) 127.
https://doi.org/10.1134/S102144372206022X
Seliem, M. K., Hafez, Y. & El-Ramady, H. (2020). Using nano-selenium in reducing the negative effects of high temperature stress on
Chrysanthemum morifolium Ramat.
Journal of Sustainable Agricultural Sciences, 46(3), 47–60.
https://doi.org/10.21608/jsas.2020.23905.1203
Shahraki, B.,
Bayat, H., Aminifard, M. H. & Azarmi Atajan,
F. (2022). Effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (
Calendula officinalis L.) under salinity stress conditions.
Journal of Communications in Soil Science and Plant Analysis,
53(20), 2749-2765.
https://doi.org/10.1080/00103624.2022.2089679
Tahmasebi, A., Ebrahimie, E., Pakniyat, H., Ebrahimi, M. & Mohammadi-Dehcheshmeh, M. (2019). Tissue-specific transcriptional biomarkers in medicinal plants: application of large-scale meta-analysis and computational systems biology.
Gene, 691, 114–124.
https://doi.org/10.1016/j.gene.2018.12.056
Tavakoli, S., Enteshari, S. & Yousefifard, M. (2020). Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in
Melissa officinalis.
Iranian Journal of Plant Physiology, 10(2), 3125-3134.
https://doi.org/10.30495/ijpp.2020.672572
Thygesen, L., Thulin, J., Mortensen, A. & Skibsted, L. (2007). Antioxidant activity of cichoric acid and alkamides from
Echinacea purpurea, alone and in combination.
Food Chemistry, 101(1), 74-81.
https://doi.org/10.1016/j.foodchem.2005.11.048
Valentovic, P., Luxova, M., Kolarovi, L. & Gasparikora, O. (2006). Effect of osmotic stress on compatible solutes content, memberane stability and water relations in two maize cultivars.
Plant, Soil and Environment,
52(4), 186-191.
http://dx.doi.org/10.17221/3364-PSE
Wagner, G. J. (1979). Content and vacuole extra vacuole distribution of neutral sugars, free amino acids and anthocyanins in protoplasts.
Plant Physiology, 64(1), 88-93.
https://doi.org/10.1104/pp.64.1.88
Wang, Y., Rao, C., Huang, L., Wu, J., Sun, P., Zhan, J., Wu, J., Liu, S., Zhou, C., Hu, L., Li, N., Chen, J. & He, X. (2024). Effects of organic selenium and nanoselenium on drought stress of pak choi (
Brassica chinensis var.
pekinensis. cv. ‘Suzhouqing’) and Its Transcriptomic Analysis.
Agronomy, 14(1), 78.
https://doi.org/10.3390/agronomy14010078
Zahedi, S. M., Moharrami, F., Sarikhani, S. & Padervand, M. (2020). Selenium and silica nanostructure‑based recovery of strawberry plants subjected to drought stress.
Scientific Reports, 10, 17672.
https://doi.org/10.1038/s41598-020-74273-9