کاوش در جوانه‌زنی و مورفولوژی دانه گرده گلابی اروپایی (Pyrus communis L.) ژنوتیپ امیدبخش A95 و رقم سبری برای بهبود عملکرد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

برای تشکیل میوه موفقیت آمیز در برنامه‌های دورگ‌گیری‌ کنترل ‌شده در خارج از فصل گل‌دهی و یا استفاده از گرده‌ها برای اهداف تولید در زمان‌های مقتضی، وجود دانه گرده زنده در زمان پذیرش کلاله، از اهمیت بالایی برخوردار می‌باشد. در این تحقیق اثر مدت زمان (3، 6، 9 و 12 ماه) و دمای نگه‌داری (دمای محیط آزمایشگاه، 4، 20- و 80- درجه سلسیوس) بر جوانه زنی دانه گرده در محیط کشت حاوی ساکارز (15 درصد)، بوریک اسید (20 پی‌پی‌ام)، نیترات کلسیم (219/1 میلی مولار) و آگار (8 درصد) در رقم سبری و ژنوتیپ امید بخش A95 از گلابی اروپایی در یک آزمایش فاکتوریل و در قالب طرح‌ کاملاً تصادفی با سه تکرار بررسی شد .همچنین ویژگی‌های مورفولوژیک دانه های گرده با استفاده از میکروسکوپ الکترونی مورد ارزیابی قرار گرفت. نتایج کشت دانه گرده نشان داد که بیشترین زنده‌مانی دانه گرده در ژنوتیپ A95، دمای 20- درجه سلسیوس و پس از سه ماه نگهداری بود. به‌طورکلی، میزان جوانه‌زنی دانه‌های گرده با کاهش دما، افزایش‌ و با گذشت زمان نگهداری، کاهش‌ یافت. نتایج بررسی مورفولوژی دانه گرده مشخص کرد که دانه‌های گرده مطالعه شده تک‌تایی، جور قطب با تقارن شعاعی و دارای 3 شیار طولی در سطح خود بودند. شکل دانه‌های گرده پرولیت و اندازه آنها از 31/35 تا 51/39 میکرومتر متفاوت بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploring the Germination and Pollen Grain Morphology of European Pear (Pyrus communis L.) with the Promising Genotype A95 and Cultivar 'Sebri' to Improve Yield

نویسندگان [English]

  • Atefeh kahnouji
  • Kazem Arzani
Department of Horticultural Science, Faculty of agriculture, Tarbiat Modares University (TMU), Tehran, Iran
چکیده [English]

In order to enhance the rate of successful fruit set in controlled and out-of-season hybridizing programs or to improve crop production at a given time, it is important to have viable pollens during stigma acceptance. This study aimed to investigate the effect of duration (3, 6, 9, and 12 months) and temperature of storage (laboratory ambient temp, 4, -20, and -80 °C) on pollen germination of 'Sebri' cultivar and promising A95 genotype of European pear on medium containing %15 sucrose, 20 ppm boric acid, 1.219 mM calcium nitrate, and %0.8 agar. The experiment was performed as a factorial in a randomized complete design (RCD). Morphological characteristics of pollen grains were also explored using a scanning electron microscope (SEM). Results showed that the highest viability of pollen grains was observed in A95 promising genotype, stored for three months at -20°C. Furthermore, the percentage of pollen germination significantly increased as temperature and duration of storage were reduced. In addition, our findings showed that the studied pollen grains were monads, spheroidal in shape, radially symmetrical, and had three longitudinal furrows on their surface. Moreover, the shape of the pollen grains was prolate, and their sizes varied from 35.31 to 39.51 μm.

کلیدواژه‌ها [English]

  • A95 genotype
  • European pear
  • Pollen germination
  • Pollen morphology
  • Pollination
  • SEM

Extended Abstract

Introduction

    Pollen grains, as units of sexual reproduction and carriers of genetic material, play a crucial role in breeding programs and the successful fruit formation. Studying the characteristics of pollen grains, such as germination percentage and pollen tube growth, is essential for evaluating their viability and longevity in horticultural research. Furthermore, the specific traits of pollen grains contribute to identifying the type of a given parent and its position in plant taxonomy. In general, determining the characteristics of pollen grains for a genotype is decisive in plant breeding programs.

Selection of superior chance seedling genotypes has always been of particular importance in pear breeding. The promising genotype A95 (a chance-selected seedling from the Asian pear collection orchard with the 'Dargazi' European pear seedling rootstock in the Department of Horticultural Science at Tarbiat Modares University) has attracted attention due to its desirable aroma, flavor, and good fruit appearance. In this context, this study aimed to examine pollen grain germination in response to different storage temperatures (laboratory room temperature, -4, -20, and -80 degrees Celsius) for long-term storage in two European pears, including 'Sebri' and the A95 promising genotype. Moreover, the micromorphology of pollen grains was studied.  

 

Materials and Methods

    This research was conducted in the pear research orchard in the Department of Horticultural Science at Tarbiat Modares University (TMU) in Tehran, Iran, during the 2021 growing season. At the beginning of the blooming of the `Sebri’ cultivar and the A95 promising genotype, several branches with sufficient and suitable flower buds were selected and labeled for flower and pollen sampling. To prevent unwanted pollen contamination, the selected branches were covered with cotton bags before anthesis. Following anthesis, flower samples were collected from the tagged shoots and transferred to the Pomology Lab, Department of Horticultural Science at TMU. The anthers were allowed to dry for 24 hours on filter paper inside petri dishes under the ambient environment. Pollen grains were collected in small glass vials and sealed with parafilm to prevent moisture and any contamination, and stored under four different temperatures (laboratory environment, 4°C, -20°C, and -80°C) at four time periods (3, 6, 9, and 12 months). Pollens were then examined for viability and germination tests. At the specified time intervals, the pollen grains were scattered on petri dishes containing sucrose (15%), boric acid (20 ppm), calcium nitrate (1.219 mM), and agar (0.8%). The germination percentage of the pollen grains was examined under a research microscope and calculated based on the number of germinated pollen in five separate selected areas of each petri dish. A pollen grain was considered germinated when its tube was at least as long as or longer than the diameter of the pollen. For the descriptive examination of pollen grains, the scanning electron microscope (SEM, Philips XL30) was used. Pollen grains were collected as above and transferred onto a stub with pre-glued double-sided special tape, and afterward coated with gold before viewing.

The samples were examined at magnifications of 500 to 20,000 times. The polar axis (P), equatorial axis (E), ratio of polar to equatorial axis (P/E), distance between two grooves, and width of projections on the pollen grains were measured using the Microstructure Measurement software.

 

Results and Discussion

    The germination response of the `Sebri’ cultivar and the A95 promising genotype of European pear to different temperatures and storage periods was different. Results indicated the highest pollen germination percentage in the A95 promising genotype at -20°C after 3 months of storage (21.2%). Besides, the germination test results showed that both the `Sebri’ cultivar and the A95 promising genotype had low viability under different temperature treatments, and their viability decreased significantly over the storage period. The results from the morphological examination of the pollen grains of the `Sebri’ cultivar and the A95 promising genotype of European pear using Scanning Electron Microscopy (SEM) showed that the highest polar axis (P), equatorial width (E) (1.11 ± 39.51 and 0.65 ± 23.12 micrometers, respectively), the highest P/E ratio (1.72 micrometers), the longest furrow and the widest projection (1.10 ± 33.51 and 1.13 ± 15.47 micrometers, respectively) were attributed to the pollen grains of the A95 promising genotype. This study revealed that the examined pollen grains had three longitudinal grooves on their surface, which extended to the polar axis. Moreover, the pollen grains also varied from 35.31 to 39.51 μm, and the largest size (39.51 ± 1.11 μm) was observed in the A95 promising genotype.

 

Conclusion

    The results of the present study showed that while -20°C was the optimum temperature for pollen storage of the A95 promising genotype, ambient temperature dramatically reduced pollen viability over the storage period. In terms of the descriptive pollen analysis using SEM, the studied pollen grains were all single, polar type, and had radial symmetry; they also had three longitudinal grooves on their surface, representing tricolporate pollen type.

 

Author Contributions

Atefeh Kahnouji: Made a major contribution to the proposal and the experimental work, Investigation and data collection, validation, formal analysis, and writing – original draft and further revisions. Kazem Arzani: Writing – review & editing the research proposal and manuscript for this publication, supervision, validation, and project administration, also provided facilities and access to the Pomology Lab at TMU for the first author.

 

Data Availability Statement

The authors declare that all the data supporting the findings of this research are available within the article.

 

Acknowledgment

We would like to thank Tarbiat Modares University (TMU) for providing facilities and financial support for this research. In addition, the orchard and laboratory facilities provided by Pomology Lab, Department of Horticultural Science at TMU are acknowledged.

 

Ethical considerations

This article does not contain any studies involving human and animal subjects.

 

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

منابع

پورادیب، محمد کمال؛ روحی، وحید؛ هوشمند، سعدالله؛ محمدخانی؛ عبدالرحمان و زرگری، حمید (1395). اثر دما و مدت‌زمان نگهداری بر قوه نامیه دانه گرده ارقام مختلف خرما. مجله به زراعی کشاورزی، 18 (2)، 495-506.‎ https://doi.org/10.22059/jci.2016.56584
تقی گذری، الهه و ارزانی، کاظم (18 دی 1395). چگونگی گلدهی در ژنوتیپ امید بخش A95 در مقایسه با برخی از ارقام گلابی آسیایی Pyrus serotina Rehd.  وPyrus communis L. . سومین کنفرانس بین المللی یافته های نوین در علوم کشاورزی، منابع طبیعی و محیط زیست، تهران، ایران https://civilica.com/doc/610640 .
سیار، مهیار (1393). ریخت‌شناسی دانه‌های گرده جنس کلپوره (.Teucrium L) از زیر تیره Npetoideae متعلق به خانواده نعناعیان (Lamiaceae) در استان اردبیل. پایان‌نامه کارشناسی ارشد.. دانشگاه پیام نور.
شیخی، عبدالطیف؛ ارزانی، کاظم و کوشش صبا، محمود. (1395). تعیین خود و دگر (نا) سازگاری برخی از ارقام گلابی آسیایی (Pyrus serotina Rehd.) و گلابی های اروپایی (Pyrus communis L.) بومی ایران. مجله به نژادی نهال و بذر، 32 (3)، 383-400. https://doi.org/10.22092/spij.2016.113065
عابدی قشلاقی، ابراهیم؛ جوادی مجدد، داوود و فرزام، ابراهیم (1398). اثرات دما و مدت نگهداری بر قوه نامیه دانه‌گرده کیوی‌فروت. نشریه علمی یافته های تحقیقاتی در گیاهان زراعی و باغی. (1)8، 25-36. https://doi.org/10.22092/rafhc.2019.116314.1103
 
REFERENCES
Abedi Gheshlaqi, E., Javadi Mojadad, D., & Farzam, E. (2019). Effect of temperature and storage duration on germinability of kiwifruit pollen grains. Scientific Journal of New Findings in Agricultural and Environmental Sciences, 5(25), 26–35. (In Persian). https://doi.org/10.22092/RAFHC.2019.116314.1103
Ahmadi, N., Arani, K. & Moeini, A. (2001). Study of pollen storage, germination, and pollen tube growth in some citrus cultivars. Seed Plant Journal, 17(2), 216–229.
Ahmed, S., Rattanpal, H. S., Ahmad, E., & Singh, G. (2017). Influence of storage duration and storage temperature on in-vitro pollen germination of Citrus species. International Journal of Current Microbiology and Applied Sciences6(5), 892–902. https://doi.org/10.20546/ijcmas.2017.605.099.
Arzani, K. (2014). Fruit tree physiology and breeding programs research using microscopic technology. In K. Efstathios, K. Polychroniadis, A. Yavuz Oral & M. Ozer (Eds.), International Multidisciplinary Microscopy Congress, 154 (pp. 275-281). Springer International Publishing. https://doi.org/10.1007/978-3-319-04639-6_39.
Arzani, K. (2020). The onset of controlled hybridization, pollination studies, and the history of pollinizer application in the commercial fruit tree orchards in Iran. Acta Hortic, 1297, 137-144. https://doi.org/10.17660/ActaHortic.2020.1297.19
Arzani, K., Nejatian, M. A. & Karimzadeh, G. (2005). Apricot (Prunus armeniaca) pollen morphological characterization through scanning electron microscopy, using multivariate analysis. New Zealand Journal of Crop and Horticultural Science, 33(4), 381–388.
Bhat, Z. A., Dhillon, W. S., Shafi, R. H. S., Rather, J. A., Mir, A. H., Shafi, W., Rashid, R., Bhat, J. A., Rather, T. R., & Wani, T. A. (2012). Influence of storage temperature on viability and in vitro germination capacity of pear (Pyrus spp.) pollen. Indian Journal of Agricultural Science, 4 (11), 128-137.
Borghezan, M., Clauman, A. D., Steinmacher, D. A., Guerra, M. P., & Orth, A. I. (2011). In vitro viability and preservation of pollen grain of kiwi (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev). Journal of Crop Breeding and Applied Biotechnology, 11(4), 338-344.
Calic, D., Devrnja, N., Kostic, I. & Kostic, M. (2013). Pollen morphology, viability, and germination of Prunus domestica cv. Požegača. Scientia Horticulturae, 155 (1), 118–122. https://doi.org/10.1016/j.scienta.2013.03.017.
Ćalić, D., Milojević, J., Belić, M., Miletić, R. & Zdravković-Korać, S. (2021). Impact of storage temperature on pollen viability and germinability of four Serbian autochthon apple cultivars. Frontiers in Plant Science, 12(4), 709231. https://doi.org/10.3389/fpls.2021.709231
Cruz, T. V., Souza, M. M., Roza, F. A., Viana, A. J. C., Belo, G. O., & Fonseca, J. W. S. (2008). Germinação in vitro de grãos de pólen em Passiflora suberosa L. para sua utilização em hibridação interespecífica. Revista Brasileira Fruticultura, 30, 875-879.
Dar, J. A., Wani, A. A. & Dhar, M. K. (2019). Preliminary pollen analysis of some apple cultivars in Kashmir: Towards understanding the apple pollen morphology. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90 (2), 431-438.‏ https://doi.org/10.4025/actasciagron.v36i2.17346
Doğan, C. & Baysal, E. (2019). Pollen morphology of the coastal species of Turkish Limonium (Plumbaginaceae). Phytotaxa, 388(3), 212-228.
Đorđević, M., Vujović, T., Cerović, R., Glišić, I., Milošević, N., Marić, S., Radičević, S., Fotirić Akšić, M. & Meland, M. (2022). In vitro and in vivo performance of plum (Prunus domestica L.) pollen from the anthers pollinated at distinct temperatures for different periods. Horticulturae8(7), 616–616. https://doi.org/10.3390/horticulturae8070616
Dutta, S. K., Srivastav, M., Chaudhary, R., Lal, K., Patil, P., Singh, S. K., & Singh, A. K. (2013). Low temperature storage of mango (Mangifera inidica L.) pollen. Scientia Horticulturae, 161, 193–197.
Ghazaeian, M., Arzani, K. & Moieni, A. (2007). Study on pollen of some Asian pear genotypes by scanning electron microscopy (SEM) and a suitable pollen germination medium. Iranian Journal of Horticultural Science and Technology, 8(2), 113-124. https://sid.ir/paper/80947/en.
Hanna, W. W. & L. E. Towill. (1995). Long-term pollen storage. In J. Janick (Ed.),  Plant Breeding. Reviews, 13, 179–207. Wiley. doi.org/10.1002/9780470650059.ch5.
Ikram, S., Jaskani, M. J., Ikram, S., Qureshi, M. A., Rehman, S. U., Hussain, M., Shafqat, W., Din, S. U., Zafar, M. H., Raza, S., & Bukhari, S. I. U. S. (2022). Effectiveness of pollen germination media for improving storage potential in pomegranate (Punica granatum) germplasm. Journal of Plant and Environment, 4(2), 155-161.‏ https://doi.org/10.33687/jpe.004.02.3896
Javady, T., and Arzani, K. (2001). Pollen morphology of five Iranian olive (Olea europaea L.) cultivars. Journal of Agricultural Science and Technology, 3(1), 37–42.
Kaufmane, E. & Rumpunen, K. (2002). Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince). Scientia Horticulturae94(3-4), 257-271.‏ doi.org/10.1016/S0304-4238(01)00371-5.
Khaleghi, E., Karamnezhad, F. & Moallemi, N. (2019). Study of pollen morphology and salinity effect on the pollen grains of four olive (Olea europaea) cultivars. South African Journal of Botany, 127 (11), 51-57. https://doi.org/10.1016/j.sajb.2019.08.031
Khush-khui, M., Bassiri, A. & Niknejad, M. (1976). Effect of temperature and humidity on pollen viability of six rose species. Canadian Journal of Plant Science, 56(3), 517-523.
Linskens, H.F. (1964). Pollen physiology and fertilization. North–Holland Publishing Company, The Netherlands. 257 pp.
Machado, C. D. A., Moura, C. R. F., Lemos, E. E. P. D., Ramos, S. R. R., Ribeiro, F. E. & Lédo, A. D. S. (2014). Pollen grain viability of coconut accessions at low temperatures. Acta Scientiarum. Agron, 36(2), 227–232.
Marasali, B., Pinar, M. & Buyukkartal, H. N. (2005). Palynological study on the pollen grains of selected Turkish grape (Vitis vinifera L.) cultivars. Turkish Journal of Agriculture and Forestry, 29(1), 75–81.
Marcucci, M. C., Sansavini, S., Ciampolini, F. & Cresti, M. (1984). Distinguishing apple clones and cultivars by surface morphology and pollen physiology. Journal of the American Society for Horticultural Science, 109(1), 10–19. https://doi.org/10.21273/jashs.109.1.10.
Martínez-Gómez, P., Gradziel, T. M., Ortega, E. & Dicenta, F. (2002). Low temperature storage of almond pollen. Horticultural Science, 37(4), 691–692. https://doi.org/10.21273/hortsci.37.4.691.
Maryam, A., Jaskani, M. J. & Naqvi, S. A. (2017). Storage and viability assessment of date palm pollen. Methods in Molecular Biology, 1638, 3–13. doi: 10.1007/978-1-4939-7159-6_1.
Milatović, D. & Nikolić, D. (2019). Morphological characteristics and germination of pollen in European and Japanese plum cultivars. Acta Horticulturae, 1260, 105-112.‏ https://doi.org/10.17660/ActaHortic.2022.1352.44.
Mortazavi, S. M. H., Torahi, A. & Beremeh, L. (2011). A study on the pollen morphology of Khuzestan male date varieties by scanning electron microscopy (SEM). Plant Productions, 33(2), 97-109.
Najafzadeh, R. & Arzani, K. (2015). Superior growth characteristics, yield, and fruit quality in promising European pear (Pyrus communis L.) chance seedlings in Iran. Journal of Agricultural Science and Technology, 17(2), 427-442.‏
Novara, C., Ascari, L., LaMorgia, V., Reale, L., Genre, A. & Siniscalco, C. (2017). Viability and germinability in long-term storage of Corylus avellana pollen. Scientia Horticulturaec, 214(5), 295–303. https://doi.org/10.1016/j.scienta.2016.11.042.
Özcan, A. (2020). Effect of low-temperature storage on sweet cherry (Prunus avium L.) pollen quality. HortScience, 55(2), 258-260.‏ https://doi.org/10.21273/hortsci14660-19.
Pinillos, V. & Cuevas, J. (2007). Artificial pollination in tree crop production. In J. Janick (Ed.), Horticultural reviews, 34. Wiley. doi.org/10.1002/9780470380147.ch4.
Popa, V. I., Badulescu, L., Iordachescu, M. & Udriste, A. A. (2022). Preliminary pollen grain characterization of several apple and plum varieties. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Horticulture, 79(1), 33-40. https://doi.org/10.15835/buasvmcn-hort:2021.0020.
Pouradib, M. K., Roohi, V., Hooshmand, S. A., Mohammadkhani, A. A., Abdolrahman, M., & Zargari, H. (2016). The effect of temperature and storage duration on the physical characteristics of date fruits in different cultivars of dates. Journal of Crop Improvement, 18(2), 495–506. (In Persian) https://doi.org/10.22059/jci.2016.56584
Radovic, A., Nikolic, D., Milatovic, D., Đurovic, D. & Trajkovic, J. (2016). Investigation of pollen morphological characteristics in some quince (Cydonia oblonga Mill.) cultivars. Turkish Journal of Agriculture and Forestry40(95), 441–449. https://doi.org/10.3906/tar-1511-76.
Rakonjac, V., Nikolić, D., Čolić, S., Glišić, I., Đorđević, M., Popovska, M. & Radičević, S. (2024). Investigation of pollen morphology and viability of sweet and sour cherry genotypes by multivariate analysis. Microscopy Research and Technique44(58). https://doi.org/10.1002/jemt.24674.
Sayyar, M. (2015). Taxonomic study of the genus Teucrium L. from the subtribe Nepetoideae, belonging to the family Lamiaceae, in Lorestan Province. Master's Thesis in Plant Systematics, Lorestan University. (In Persian).
Şenbaş, A., Horzum, Ö., Gencer, C. D. & Özkaya, M. T. (2022). Storage and in-vitro germination of some olive pollens. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi32(4), 843–852. https://doi.org/10.29133/yyutbd.1188414
Sheykhi, A. A., Arzani, K., & Kooshesh Saba, M. (2016). Determination of suitable pollinizers for some Asian pear (Pyrus serotina Rehd.) and European pear (Pyrus communis L.) cultivars. Journal of Nursery Plant Production and Cultivation, 2(4), 383–400. (In Persin). https://doi.org/10.22092/spji.2016.113065
Shim, K. K., Suh, B. K. & Park, S. H. (1988). A palynotaxonomic study of Pyrus species. Journal of the Korean Society for Horticultural Science, 29, 102–108.
Shivanna, K. R. & B. M. Johri. (1985). The angiosperm pollen: structure and function. Wiley Eastern Ltd, pp. 374.
Smitha, K., Paton, A. & Sunojkumar, P. (2018). Re-establishment of Plectranthus bishopianus (Lamiaceae) based on morphological and micromorphological data. Plant Systematics and Evolution304: 807-816.‏ doi. 10.1007/s00606-018-1511-6.
Taghigozari, E., & Arzani, K. (2017). Floral biology of Pyrus serotina Rehd. and Pyrus communis L., promising A95 genotype in comparison with some Asian pear cultivars. Proceedings of the 3rd International Conference on New Findings in Agricultural Science, Natural Resources and Environment, Tehran, Iran. (In Persian). https://civilica.com/doc/610640
Varasteh, F. & Arzani, K. (2009). Classification of some Iranian pomegranate (Punica granatum) cultivars by pollen morphology using scanning electron microscopy. Journal of Horticulture Environment and Biotechnology, 50(1), 24-30.
Visser, T. (1955). Germination and storage of pollen. Medelingen van de Landbouwhoogeschoolte, Wageningen, Netherland, 55(1), 1-68.