پاسخ‌های مورفولوژیک، فیزیولوژیک و بیوشیمیایی انگور رقم 'بیدانه قرمز' پیوندی روی هفت پایه به تنش کم آبی، جهت شناسایی متحمل‌ترین ترکیب پایه و پیوندک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده انگور و کشمش دانشگاه ملایر، ملایر، ایران

2 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

3 موسسه آموزش عالی عمران و توسعه، همدان، ایران

4 بخش زراعی و باغی، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

چکیده

تنش خشکی یکی از مهمترین محدودیت‌ها در تولید محصولات کشاورزی، به‌خصوص باغبانی در نقاط مختلف جهان و ایران می‌باشد. با توجه به تغییرات اقلیمی که در چند سال اخیر اتفاق افتاده است، می‌توان با بررسی و انتخاب ارقام متحمل به تنش خشکی، تولید پایدار انگور در شرایط تنش آبی را فراهم نمود. به‌همین منظور، پژوهشی در طی سالهای1400-1397 در شرایط باغ و به صورت آزمایش اسپیلت پلات بر پایه بلوک کامل تصادفی با سه تکرار برای بررسی تأثیر تغییرپذیری پتانسیل آب خاک برصفات ریخت شناختی، فیزیولوژیک و بیوشیمیایی ارقام انگور متحمل تا حساس به خشکی انجام شد. تیمارها شامل هفت رقم انتخابی انگور ('بیدانه قرمز'، 'بیدانه سفید'، 'رشه '،'ساهانی '، 'کره رویه'، 'مولایی ' و 'چفته') به‌عنوان پایه، و پیوندک رقم'بیدانه قرمز' و سه سطح تنش خشکی، شامل رطوبت زراعی (شاهد)، 75 درصد (تنش متوسط) و 55 درصد (تنش شدید) تخلیه رطوبت زراعی بودند. در این تحقیق، صفات تعداد برگ، طول شاخه، سطح برگ، وزن تر و خشک برگ، تراکم روزنه، نشت یونی، میزان پایداری غشای سلولی، محتوای نسبی آب برگ، کلروفیل، کارتنوئید، پرولین، کربوهیدرات محلول، میزان مالون دی آلدئید و کاتالاز اندازه گیری شدند. نتایج نشان داد که اثر متقابل تنش خشکی و رقم بر صفات سطح برگ، محتوای نسبی آب برگ، کربوهیدرات محلول، پرولین، کلروفیل کل، کارتنویید، کاتالاز و مالون دی آلدئید مورد بررسی در سطح یک درصد معنی دار بود. همچنین، اثرات ساده تنش خشکی بر صفات تعداد برگ، طول شاخه، وزن تر برگ، تراکم روزنه، نشت یونی و پایداری غشای سلولی معنی دار بود. با تنش آبی شدیدتر، میزان پرولین و کاتالاز افزایش و میزان کلروفیل کل و پایداری غشای سلولی کاهش یافت. به طورکلی، انگور رقم 'بیدانه قرمز' پیوند شده روی پایه های 'چفته'، 'مولایی' و 'کره رویه' در اغلب صفات، پتانسیل بالاتری را از نظر تحمل به تنش خشکی در شرایط تاکستان نسبت به دیگر ترکیب های پیوندی مورد آزمایش نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Morphological, Physiological and Biochemical Responses of 'Bidaneh Ghermez' Grape Scion on Seven Rootstocks to Water Deficit, to Identify the Most Tolerant Rootstock and Scion Combination

نویسندگان [English]

  • Saiyed Mohammad Mahdi Mirfatah 1
  • Mousa Rasouli 2
  • Mansour Gholami 3
  • Abbas Mirzakhani 4
1 Department of Grape and Raisin Research Institute, Malayer University, Malayer, Iran
2 Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
3 Department University College of Omran-Toseeh, Hamedan, Iran
4 Department of agricultural and horticultural department, Center for Agricultural Research, Education and Natural Resources of Arak Province, Agricultural Research, Education and Extension Organization, Arak, Iran
چکیده [English]

Drought stress is one of the most important abiotic stresses restricting agricultural production, especially horticultural products, in different parts of the world and Iran. Regarding climate changes happened in the last few years, a sustainable production of grape is feasible in regions with drought stress using tolerant cultivars. To this end, an experiment was conducted in a split-plot design based on a randomized complete block (RCBD) with three replications during 2018-2021, at vineyard condition. At first, 'Bidaneh Ghermez' cultivar as scion were grafted on seven grape cultivars ('Bidaneh Ghermez', 'Bidaneh Sefid', 'Rashe', 'Sahani', 'Kare Royeh', 'Moulai', and 'Chafte') then grafted plants were subjected to three levels of drought, including field capacity (FC) (as control), 75% (moderate stress), and 55% (as severe stress) moisture depletion at 5-6-leaf stage. Some morphological, physiological and biochemical traits were measured after two months. The results showed that the interaction of drought × cultivar was significant in terms of leaf surface traits, RWC, soluble carbohydrates, proline, total chlorophyll, carotenoids, catalase, and MDA (p<0.01). In addition, the main effect of drought significantly influenced leaf number, branch length, leaf fresh weight, stomatal density, electrolyte leakage, and cell membrane stability. Furthermore, the result of the mean comparison showed that mounting the severity of drought level led to an increase in the amount of proline and catalase, and a reduction in the amount of total chlorophyll and cell membrane stability. In conclusion, 'Bidaneh Ghermez' cultivar grafted on the rootstocks of 'Chafte', 'Moulai' and 'Kare Royeh' had a higher potential to be used as tolerant cultivars to drought stress compared to the other grafted combinations, examined in a vast majority of the studied traits.

کلیدواژه‌ها [English]

  • Drought stress
  • Grape
  • Proline
  • Scion and Rootstock

Extended Abstract

Introduction

     Abiotic stresses are of the upmost factors limiting plant production in the world. As an economically important crop, grape can be considered as a model of perennial plant to study plants tolerance to drought stress. In recent years, different regions in the world, such as the Mediterranean regions of Europe, Southwest Asia, and North America, are allocated to grape cultivation. These regions are generally suffered from drought stress, especially at grape flowering and fruit setting, consequently resulted in a reduction in its yield and fruit quality. Climate change and water stress have increased the number of hot and dry periods in the world, and this condition needs to be regarded when establishing a new vineyard. In general, grape is a commercial fruit with high economic importance, but remarkably affected by abiotic stresses such as drought stress. Therefore, grafting has been widely used in agriculture to increase plants tolerance to abiotic stresses, in a way that it contributes to breeding programs for selecting drought-tolerant plants through selecting and integrating morphological and physiological traits. In addition to employing methods active in reducing drought, using drought-tolerant cultivars as suitable rootstocks is an appropriate way to alleviate the adversary effect of drought on plants. The tolerance of grape rootstock to drought is different based on the type of variety. A suitable combination of rootstock and scion may improve grape yield under water stress.

 

Materials and Methods

In order to investigate the effect of drought stress on the morphological, physiological, and biochemical traits of seven grafted rootstocks, an experiment was conducted in a split-plot design based on a randomized complete block (RCBD) with three replications, during 2018-2021. Rootstocks ('Bidaneh Ghermez', 'Bidaneh Sefid', 'Rashe', ‘Sahani', 'Kare Royeh', 'Moulai' and 'Chafte' cultivars) were obtained from orchard collections in Qazvin, Kordestan and Malayer universities and planted in an orchard located at the Agricultural Research Station of the Center for Research and Education of Markazi Province in March 2018. On the following year, scions of 'Bidaneh Ghermez' were grafted on all seven rootstocks. Grafted plants, at 5-6-leaf stage, were subjected to three levels of drought, including field capacity (FC) (as control), 75% moisture (as moderate stress), and 55% moisture (as severe stress). The studied traits were leaf number, branch length, leaf area, wet and dry leaf weight, stomatal density, electrolyte leakage, cell membrane stability, relative water content (RWC), chlorophyll, carotenoid, proline, soluble carbohydrate, malondialdehyde (MDA) and catalase, which were measured in plants exposed to drought stress condition for two months.

 

Results and Discussion

Our findings showed that the interaction effect of drought stress × cultivar was significant in terms of leaf surface traits, soluble carbohydrates, proline, total chlorophyll, carotenoid, catalase, RWC, and MDA (p<0.01). Furthermore, the main effect of drought stress had a significant effect on leaf number, branch length, leaf fresh weight, stomatal density, electrolyte leakage and cell membrane stability. The result of the mean comparison showed that the severe drought increased the amount of proline and catalase in the treated plants, but reduced total chlorophyll content and cell membrane stability. In general, the 'Bidaneh Ghermez' cultivar (as scion), grafted on 'Chafte', 'Moulai' and 'Kare Royeh' cultivars (as rootstocks), provided a higher potential to tolerate drought stress, as compared to other scion-rootstock combination examined in this experiment. In addition, our findings revealed that drought not only decreased photosynthetic pigments and conversely increased cell membrane electrolyte leakage, but also higher content of proline and MDA as well as antioxidant activities. Moreover, the results showed that raising drought level led to a reduction in the plant growth parameters and shoot morphology characteristics. In this research, some cultivars, such as 'Chafte', 'Moulai' and 'Kare Royeh', accumulated lower MDA rather than other cultivars, indicating their tolerance to drought stress. In our research, treated cultivars were found to have more ion leakage in comparison to the control, especially at severe drought stress. At moderate and severe levels of drought stress, the amount of ionic leakage in 'Bidaneh Ghermez', grafted on the rootstocks of 'Kare Royeh', 'Bidaneh Sefid' and 'Chafte', was lower than that in the remaining rootstocks. Besides, the results showed that the three above-mentioned rootstocks were tolerant to drought because of higher proline content and lower chlorophyll loss, as compared to the other studied rootstocks. Furthermore, the highest chlorophyll content was found in 'Bidaneh Ghermez' grafted on 'Kare Royeh' and 'Chafte' at high level of drought stress. In general, under drought stress, 'Chafte' and 'Kar Royeh' also had lower chlorophyll loss, as compared to the other rootstocks.

Conclusion
An increase in some characteristics of treated cultivars could implicate their tolerance to drought stress. Although the photosynthetic characteristics of plants generally decline due to drought stress, a reduction in these characteristics was not observed remarkably in 'Chafte', 'Moulai' and 'Kare Royeh' cultivars, as compared to other rootstocks, representing their tolerance to drought. Therefore, they may be suggested as drought tolerance rootstocks when using 'Bidaneh Germez' as scion in specific regions of Markazi province that are susceptible to water scarcity. 

منابع

دولتی بانه، حامد؛ احمد آلی، جمال و رسولی، موسی (1398). تأثیر تنش خشکی بر برخی صفات مورفوفیزیولوژیکی در تعدادی از ارقام تجاری داخلی و خارجی انگور. پژوهش‌های میوه‌کاری، 4(2)، 127-142.
سروری، شیما؛ اصغرزاده، احمد؛ مرجانی، علی و صمدی کاظمی، ملیحه (1401). ارزیابی تحمل برخی از ارقام انگور نسبت به تنش خشکی با استفاده از مطالعات فیزیولوژیکی و بیوشیمیایی. علوم باغبانی، 36(2)، 373-388. doi: 10.22067/jhs.2021.67767.1004
سوخت سرایی، رضا؛ عبادی، علی؛ سلامی، سید علیرضا و لسانی، حسین (1396). بررسی شاخص‌های اکسیداتیو در سه رقم انگور (Vitis vinifera L.) در شرایط تنش خشکی. نشریه علوم باغبانی ایران، 48 (1)، 85-98. doi: 10.22059/ijhs.2017.106884.592
مددی، داریوش؛ عبادی، علی؛ دولتی بانه، حامد؛ عبدوسی، وحید و حدادی نژاد، مهدی (1400). پاسخ‌های ریخت‌شناسی و فیزیولوژیکی نهال پیوندی انگور بیدانه سفید روی پایه ایرانی و خارجی در ‏شرایط تنش خشکی. نشریه علوم باغبانی ایران، 52 (2)، 367-353  doi 10.22059/ijhs.2020.260522.1463
 مهری، حمیدرضا؛ قبادی، سیروس؛ بانی نسب، بهرام؛ احسان زاده، پرویز و غلامی، مهدیه (1393). بررسی برخی پاسخ های فیزیولوژیک و مورفولوژیک چهار رقم انگور ایرانی(Vitis vinifera L.) به تنش خشکی در شرایط درون شیشه ای. فرآیند و کارکرد گیاهی، 3(10)، 115-126.
RERERENCES
Abbaspour, N. & Babaee, L. (2017). Effect of salicylic acid application on oxidative damage and antioxidant activity of grape (Vitis vinifera L.) under drought stress condition. International Journal of Horticultural Science and Technology, 4(1), 29-50.‏ https:doi.org. 10.22059/ijhst.2017.227384.176
Altıncı, N. T. & Cangi, R. (2019). Drought tolerance of some wine grape cultivars under in vitro conditions. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 36(2), 145-152.‏ https: doi.org doi:10.13002/jafag4633  
Aran, M., Abedi, B., Tehranifar, A. & Parsa, M. (2017). Effects of drought stress on some morphological and physiological properties of three grapevine cultivars (Vitis vinifera L.). Journal of Horticulture Science , 31(2), 315-326 https://doi.org/10.22067/jhorts4.v0i0.53495
Asadi, W., Rasouli, M., Gholami, M. & Maleki, M. (2020). Effect of some cultivars of native grapevine as rootstocks and triachenetanol on the physiology of'Bidaneh Sefid' grapevine scion (Vitis vinifera L.), under drought stress. Iranian Journal of Horticultural Science, 51(2).‏ doi:  10.22059/ijhs.2019.269570.1539
Asadi, W., Gholami, M., Rasouli, M. & Maleki, M. (2019). Effect of drought stress on some physiological traits in three varieties of grapes (Vitis vinifera L.). Isfahan University of Technology-Journal of Crop Production and Processing, 9(3), 45-59.‏‎doi: 10.47176/jcpp.9.3.24642
Bahrani, P., Ebadi, A., Zamani, Z. & Fatahi Moghadam, M. R. (2020). Effects of Drought Stress Levels on Some Morphological and Physiological Traits to Select the Most Tolerant ones as a Rootstock. Journal of Plant Production Research, 27(1), 41-56.‏ doi:10.22069/jopp.2020.15230.2369
Bates, L. S., Waldren, R. P. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.‏ http://dx.doi.org/10.1007/BF00018060
Bauerle, T.L., Centinari, M. & Bauerle, W.L. (2011). Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta, 234(5), 1045-1054.‏ doi10.1007/s00425-011-1460-6
Bertamini, M., Zulini, L., Muthuchelian, K. & Nedunchezhian, N. (2006). Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44, 151-154.‏ https://doi.org/10.1007/s11099-005-0173-0
Bhargavi, B., Kalpana, K. & Reddy, J.K. (2017). Influence of water stress on morphological and physiological changes in Andrographis paniculata. International. Journal of Pure and Applied. Bioscience, 5(6), 1550-1556.‏          
Bikdeloo, M., Colla, G., Rouphael, Y., Hassandokht, M.R., Soltani, F., Salehi, R., & Cardarelli, M. (2021). Morphological and physio-biochemical responses of watermelon grafted onto rootstocks of wild watermelon [Citrullus colocynthis (L.) Schrad] and commercial interspecific cucurbita hybrid to drought stress. Horticulturae, 7(10), 359,1-12.‏ https://doi.org/10.3390/horticulturae7100359
Chance, B. & Maehly, A. C. (1955). Assay of catalases and peroxidases. In Methods in Enzymology. Elsevier Science and Technology 2, 764-775.
Chung, P.J., Jung, H., Choi, Y.D. & Kim, J. K. (2018). Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics, 19, 1-17.‏ https://doi.org/10.1186/s12864-017-4367-1
Daldoul, S., Boubakri, H., Gargouri, M. & Mliki, A. (2020). Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Molecular Biology Reports, 47(4), 3141-3153.‏  https://doi.org/10.1007/s11103-021-01122-2.
Doulati Baneh, H., Ahmadaali, J. & Rasouli, M. (2019). Effects of drought stress on some morphophysiological traits of some Iranian and foreign commercial grape varieties. ‏Pomology Research, 4(2), 127-142.  (In Persian).
Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A. & Maleki Lajayer, H. (2023). Impact of drought stress on morphological and physiological traits in some Iranian grape cultivars. Journal of Plant Process and Function, 11(47), 249-266.‏ http://dorl.net/dor/20.1001.1.23222727.1401.11.47.11.0
Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A., Lajayer, H. M., Gohari, G. & Hano, C. (2022). Multivariate discrimination of some grapevine cultivars under drought stress in Iran. Horticulturae, 8(10),871.‏ https://doi.org/10.3390/horticulturae8100871
Fanizza, G. & Ricciardi, L. (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes (Vitis vinifera L.). VITIS-Journal of Grapevine Research, special issue, 29, 371-381  https://doi.org/10.5073/vitis.1990.29.special-issue.371-381  
Ferlito, F., Distefano, G., Gentile, A., Allegra, M., Lakso, A. N. & Nicolosi, E. (2020). Scion–rootstock interactions influence the growth and behaviour of the grapevine root system in a heavy clay soil. Australian Journal of Grape and Wine Research, 26(1), 68-78. https://doi.org/10.1111/ajgw.12415
Flexas, J., Galmés, J., Gallé, A., Gulías, J., Pou, A., Ribas‐Carbo, M., Tomas, M. & Medrano, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121.‏ https://doi.org/10.1111/j.1755-0238.2009.00057.x
Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U. & Castellarin, S.D. (2020). The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany, 71(16), 4658-4676.‏ https://doi.org/10.1093/jxb/eraa245
Ghaderi, N., Talaei, A., Ebadi, A. & Lesani, H. (2010). Study of some physiological                 characteristics in'Sahani','Bidane-sefid'and'Farkhii'grapes during drought stress and their subsequent recovery. Iranian Journal of Horticultural Science, 41(2), 179-188. (In Persian). ‏20.1001.1.2008482.1389.41.2.9.5
Gullo, G., Dattola, A., Vonella, V. & Zappia, R. (2018). Evaluation of water relation parameters in Vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178.‏ https://doi.org/10.1016/j.jplph.2018.04.013
Kantar, M., Lucas, S. J. & Budak, H. (2011). Drought stress: molecular genetics and genomics approaches. In Advances in botanical research, 57,445-493. Academic Press. http://dx.doi.org/10.1016/B978-0-12-387692-8.00013-8.
Karami, L., Ghaderi, N. & Javadi, T. (2017). Morphological and physiological responses   of grapevine (Vitis vinifera L.) to drought stress and dust pollution. Folia Horticulturae, 29(2), 231-240.‏ 10.1515/fhort-2017-0021.
Khandani, Y., Gholami, M., Sarikhani, H. & Chehregani Rad, A. (2022). Response of some vegetative and physiological traits of Iranian and foreign grape cultivars to drought stress. Journal of Plant Process and Function, 11(51), 153-174.‏ 20.1001.1.23222727.1401.11.51.10.7.7
Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. In J.S. Helebust (ed.), Handbook of Phycological Methods, 2, 56-97. Cambridge University Press, Cambridge.
Kucukbasmaci, A. & Sabir, A. (2019). Long-term impact of deficit irrigation on the physiology and growth of grapevine cv. ‘Prima’ grafted on various rootstocks. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4), 57-70. doi:10.24326.asphc201946.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology, 148, 350-382. Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1.
Lutts, S., Kinet, J.M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza        sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134‏
Madadi, D., Ebadi, A., Baneh, H. D., Abdousi, V. & Hadadinejad, M. (2021). Morphological and physiological responses of grafted Sultana grapevine on Iranian and American rootstocks to drought stress. Iranian Journal of Horticultural Science, 52(2), 353-367. https://doi.org/10.22059/ijhs.2020.260522.1463.(In Persian).
Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C. & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416-429.‏ https://doi.org/10.1111/j.1469-8137.2012.04059.
Marín Ederra, D., Armengol, J., Carbonell-Bejerano, P., Escalona, J. M., Gramaje, D., Hernández-     Montes, E. & Herralde, F.D. (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research 27, 8–25. https: https://doi.org/10.1111/j.1469-8137.2012.04059.x.ajgw.12463.
Mehri, H., Ghobadi, C., Baninasab, B. & Ehsanzadeh, P. (2015). Evaluation of some physiological and morphological responses of four Iranian grapevine (Vitis vinifera L.) cultivars to drought stress under in vitro conditions. Journal of Plant Process and Function, 3(10), 115-126.‏ (In Persian).
Molassiotis, A., Job, D., Ziogas, V. & Tanou, G. (2016). Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Frontiers in Plant Science, 7,183021. https://doi.org/10.3389/fpls.2016.00229.   
Paranychianakis, N.V., Chartzoulakis, K.S. & Angelakis, A.N. (2004). Influence of rootstock, irrigation level and recycled water on water relations and leaf gas exchange of Soultanina grapevines. Environmental and Experimental Botany, 52(2), 185-198.‏ https: doi.org.10.1016.j.envexpbot.2004.02.002
Pellegrino, A., Lebon, E., Simonneau, T. & Wery, J. (2005). Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Australian Journal of Grape and Wine Research, 11(3), 306-315.‏ https://doi.org/10.1111/j.1755-0238.2005.tb00030.x
Pinheiro, C. & Chaves, M.M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882.‏ https://doi.org/10.1093/jxb/erq340.
 Prinsi, B., Negri, A.S., Failla, O., Scienza, A. & Espen, L. (2018). Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC Plant Biology, 18,1-28.‏ https://doi.org/10.1186/s12870-018-1343-0.      

Prinsi, B., Simeoni, F., Galbiati, M., Meggio, F., Tonelli, C., Scienza, A. & Espen, L. (2021). Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy, 11(2),289. https://doi.org/10.3390/agronomy11020289.
Rahmani, H., Rasoli, V., Abdossi, V. & Ghanbari Jahromi, M. (2023). Ch1 (Vitis vinifera L.) rootstock control of scion response to water stress in some commercial grapevine cultivars. South African Journal of Enology and Viticulture, 44(1), 1-8.‏ https://doi.org/10.21548/44-1-5325.
Romero, P., Gil-Muñoz, R., del Amor, F.M., Valdés, E., Fernández, J.I., & Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101.‏ https://econpapers.repec.org/scripts/redir.pf?u=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.agwat.2013.01.007;h=repec:eee:agiwat:v:121:y:2013:i:c:p:85-101.
Sahitya, U. L., Krishna, M. S. R., Deepthi, R. S., Prasad, G. S., & Kasim, D. P. (2018). Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L) seedlings. BioMed Research International, 2018(1), 1605096. 10.1155/2018/1605096. PMID: 29888251; PMCID: PMC5977015.
Siddique, Z., Jan, S., Imadi, S. R., Gul, A., & Ahmad, P. (2016). Drought stress and photosynthesis in plants. Water stress and crop plants: a sustainable approach, 1, 1-11. https:doi.org.10.1002.9781119054450.ch1.
Fatemi, A., Safari, A., Saeidi, M., & Kolahchi, Z. (2023). Effect of Some Inorganic and Organic Fertilizers’ Application and Drought Stress on Superoxide Dismutase and Peroxidase Activities and Total Soluble Protein of Bidane-Ghermez Grapevines. Journal Of Horticultural Science, 37(2), 325-336.https://doi.org/10.22067/jhs.2023.73313.1102.
Singh, S. K., Sharma, H. C., Goswami, A. M., Datta, S. P., & Singh, S. P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia plantarum, 43, 283-286.https://doi.org/10.1023/A:1002720714781.
Sivritepe, N., Yerlikaya, C., Türkan, I., Bor, M., & Özdemir, F. A. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia plantarum 52:573-576. https://doi.org/10.1007/s10535-008-0114-4.
Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current opinion in biotechnology, 21(2), 197-203. https://doi.org/10.1016/j.copbio.2010.03.002.
Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2005). Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Functional Plant Biology, 32(1), 45-53.https://doi.org/10.1071/fp04003.
Sorori, S., Asgharzade, A., Marjani, A., & Samadi, M. (2022). Evaluation of drought stress tolerance among some of grape cultivars using physiological and biochemical studies. Journal of Horticultural Science, 36(2), 373-388. https://doi.org/10.22059/ijhs.2017.236292.1276 (In Persian).
Srivastava, S., & Srivastava, M. (2014). Morphological changes and antioxidant activity of Stevia rebaudiana under water stress. American Journal of Plant Sciences5(22), 3417.http://dx.doi.org/10.4236/ajps.2014.522357
Soukhtesaraee, R., Ebadi, A., Salami, S. A. and Lesani, H. (2017). Evaluation of oxidative parameters in three grapevine cultivars under drought stress. Iranian Journal of Horticultural Science, 48(1), 85-98. https://doi.org/10.22067/jhs.2021.61898.0. (In Persian).
Wang, F., Zeng, B., Sun, Z., & Zhu, C. (2009). Relationship between proline and Hg 2+-induced oxidative stress in a tolerant rice mutant. Archives of environmental contamination and toxicology, 56, 723-731. https://doi.org/10.1007/s00244-008-9226-2.
Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Emanuelli, D. (2014). Rootstock type determines tolerance of C hardonnay and S hiraz to long‐term saline irrigation. Australian Journal of Grape and Wine Research20(3), 496-506. https://doi.org/10.1111/ajgw.12094.
Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science, 21(5), 418-437. https://doi.org/10.1016/j.tplants.2015.11.008