بهینه سازی ریزازدیادی پایه GN15 (هیبرید هلو و بادام) در شرایط بیوراکتور غوطه‎وری موقت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه پژوهشی بیوتکنولوژی گیاهان باغبانی، پژوهشکده بیوتکنولوژی صنعتی، سازمان جهاد دانشگاهی خراسان رضوی، مشهد، ایران

چکیده

محیط کشت مایع به دلیل فراهم کردن محیط یکنواخت تر و عدم نیاز به جابجایی نمونه‎های کشت شده در هنگام تعویض محیط کشت، شرایط بهتری را برای ریزازدیادی گیاهان فراهم می‎کند. به‌منظور بررسی ریزازدیادی پایه GN15، ابتدا اثر ترکیب تنظیم کننده های مختلف بر استقرار ریزنمونه گره در محیط کشت نیمه جامد MS مورد ارزیابی قرار گرفت. سپس جهت مقایسه شرایط بیوراکتور غوطه‎وری موقت و کشت نیمه جامد بر ضریب تکثیر و سلامت گیاهان، در قالب سه آزمایش جداگانه، اثر دوره تناوب غوطه‎وری (غوطه‎وری 10 دقیقه در هر 6، 12 و 24 ساعت)، غلظت تنظیم کننده‎ رشد (غلظت‌های صفر، 5/0 و 1 میلی‌گرم در لیتر BA) و غلظت ساکارز (3، 4 و 5 درصد) در محیط کشت پایه MS مورد ارزیابی قرار گرفت. ریشه زایی گیاهچه‎های تکثیر شده نیز در محیط کشت MS حاوی 6/0 میلی‌گرم در لیترIBA در دو سیستم مورد بررسی قرار گرفت. استقرار ریزنمونه‎ها در محیط کشت به شدت تحت تاثیر انتخاب تنظیم کننده‎های رشد قرار گرفت، به‌طوری که محیط کشت MS حاوی 5/0 میلی‌گرم در لیتر BA بهترین نتیجه را نشان داد. نتایج آزمایش‎های تکثیر مشخص نمود که بیوراکتور غوطه‎وری موقت شرایط بهتری را برای رشد و تکثیر شاخساره‎های GN15 فراهم می‌کند. بهترین شرایط با دوره غوطه‎وری 10 دقیقه در هر شش ساعت، محیط کشت حاوی 5/0 میلی‌گرم در لیتر BA و سه درصد ساکارز به‌دست آمد. همچنین بیوراکتور غوطه‎وری موقت ارزیابی شده در این تحقیق برای ریشه زایی این پایه مناسب نبود و تمام گیاهچه‎ها در این شرایط شیشه‌ای شده و طی فرایند سازگاری از بین رفتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Micropropation of GN15 Rootstock (Hybrid of Almond and Peach) in Temporary Immersion Bioreactor

نویسندگان [English]

  • Ahmad Sharifi
  • Mahdiyeh Kharrazi
  • Azadeh khadem
Horticultural Plants Biotechnology Department, Research Institute for Industrial Biotechnology, Iranian Academic Centre for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran.
چکیده [English]

The liquid medium creates optimal conditions for plant micropropagation by providing a more consistent environment and eliminating the hassle of explant transferring during the subcultures. This study was focused on the improving of GN15 rootstock micropropagation. At the first, the impact of various plant growth regulator combinations on node explant establishment in semi-solid MS medium was investigated to select the best establishment medium. Then the comparision between two culture system including temporary immersion bioreactor system and conventional semi-solid was performed to evaluate propagation rate and plant health of GN15 rootstock. To investigate the effects of immersion times (10 minutes every 6, 12, and 24 h), plant growth regulator concentrations (0, 0.5, and 1 mg/l BA) and sucrose concentrations (3, 4, and 5 %) in MS medium three separate experiments were designed. Rooting of microcuttings was assessed in both systems with MS medium containing 0.6 mg/l IBA. The resulted revealed that successful establishment of explants was heavily dependent on plant growth regulators, MS medium containg 0.5 mg/L BA was the best. The results also demonstrated that the temporary immersion system with 10-minute immersions frequency every 6 hours, 0.5 mg/L BA, and 3% sucrose created optimal growth conditions for GN15 shoots. However, the rooting and acclimatization tests revealed that the temporary immersion system was not suitable for rooting the GN15 rootstock under the studied conditions. In overall, to maximize the benefits of the temporary immersion system in GN15 micropropagation, it is recommended to utilize a two-stage strategy. This includes carrying out the propagation in the temporary immersion system followed by rooting the microcuttings in semi-solid media.

کلیدواژه‌ها [English]

  • Humidity
  • Liquid medium
  • Temporary immersion
  • Ventilation
  • Vitrification

Extended Abstract

Introduction

The liquid medium creates a more consistent environment, eliminates explant transfer needs during medium replacement and enhances conditions for plant micropropagation. Moreover, in this culture method, larger vessels can be utilized compared to semi-solid medium, extending transfer times and fostering economical micropropagation. This study focused on the micropropagation of GN15 rootstock, a hybrid of almond and peach, recognized as the optimal rootstock for calcareous soils in Iran, conducted in temporary immersion bioreactor and semi-solid culture setups.

Materials and methods

At the first, the impact of various plant growth regulator combinations on node explant establishment in semi-solid MS medium was investigated to select the best establishment medium. Then the comparison between two culture systems including temporary immersion bioreactor system and conventional semi-solid was done to evaluate propagation indices and plant health of GN15 rootstock. To investigate the effects of immersion times (10 minutes every 6, 12, and 24 h), plant growth regulator concentrations (0, 0.5, and 1 mg/l BA) and sucrose concentrations (3, 4, and 5 %) in MS medium, three separate experiments were designed. Rooting of microcuttings was assessed in both systems with MS medium containing 0.6 mg/l IBA. The plantlets were then transferred to the pots filled with a mixture of cocopeat and vermiculite in a 1:1 ratio for acclimatization.

 

Results and Discussion

The successful establishment of explants in the medium was strongly influenced by the plant growth regulators, with the highest percentage of plantlet establishment observed in the medium containing 1 mg/L BA. This medium also exhibited a high vitrification percentage, although the other media showed lower establishment percentages, no vitrification was observed. Results from propagation experiments in both systems revealed that the temporary immersion system offered superior conditions for the growth and propagation of GN15 plantlets. In the survey of immersion duration, 10-minute immersions every 6 hours resulted in the highest number of shoots, although they showed symptoms of vitrification. As the duration between immersion cycles increased, the number of propagated plantlets decreased. Increasing the concentration of BA led to enhanced shoot proliferation and plantlet growth in both systems, especially in the temporary immersion system. However, higher BA concentrations resulted in vitrification in plantlets from the temporary immersion system. In case of sucrose, a 3% sucrose level was found to be optimal for plantlet propagation in both systems. On the other hand, at a 5% sucrose level, the quantity and quality of propagated plantlets significantly decreased. Rooting and acclimatization results for GN15 rootstock in the two systems indicated that the temporary immersion system was not suitable for rooting this rootstock, as the plantlets became vitrified and disappeared during acclimatization. The semi-solid culture system provided better conditions for rooting.

 

Conclusion

This study demonstrated that for the large-scale propagation of GN15 rootstock under in vitro conditions, shoot propagation using a temporary immersion system is achievable. The system utilized MS medium supplemented with 0.5 mg/L BA, 3% sucrose, and featured immersion cycles of 10 minutes every 6 hours. Additionally, the best rooting of regenerated shoots was achieved in a semi-solid medium.

 

باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1392). بررسی و مقایسه ظروف کشت رایج و بیوراکتورتناوبی جهت تکثیر انبوه پایه GF677 (هیبرید هلو× بادام). نشریه علوم باغبانی 27 (1)، 36-43. https://doi.org/10.22067/jhorts4.v0i0.20784  
باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1395). تاثیر محیط کشت‌های مختلف در ریزازدیادی پایه GF677 (هیبرید هلو - بادام). نشریه علوم باغبانی 30 (4)، 616-623. https://doi.org/10.22067/jhorts4.v0i0.32259
گنجی مقدم، ابراهیم؛ بلندی، احمد رضا و آناهید، صدیقه (1387). تکثیر درون شیشه‌ای چهار ژنوتیپ پاکوتاه گزینش شده محلب. مجله پژوهش و سازندگی در منابع طبیعی. 79،54-61.
مهدویان، مرتضی؛ بوذری، ناصر و عبدالهی، حمید (1389). اثر محیط کشت و تنظیم کننده رشد بر پرآوری و ریشه‎زایی پایه رویشی محلب (سنت لوسی 64). مجله به نژادی نهال و بذر 26 (1)، 15-26.  https://doi.org/10.22092/spij.2017.110967
 REFERENCES
Abahmane, L. (2020). A comparative study between temporary immersion system and semi-solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (Phoenix dactylifera L.) varieties in vitro. Notulae Scientia Biologicae, 12(2), 277-288. https://doi.org/10.15835/nsb12210610
Adelberg, J. (2017). Bioreactors and “smart vessels” for large-scale propagation. Acta Horticulturae, ISHS, 1187, 123-138. https://doi.org/10.17660/ActaHortic.2017.1187.15.
Aguilar, M. E., Garita, K., Kim, Y. W., Kim, J. A., & Moon, H. K. (2019). Simple protocol for the micropropagation of teak (Tectona grandis Linn.) in semi-solid and liquid media in RITA® bioreactors and ex vitro rooting. American Journal of Plant Sciences, 10(7), 1121-1141. https://doi.org/ 10.4236/ajps.2019.107081
Aitken-Christie, J., & Jones, C. (1987). Towards automation: Radiata pine shoot hedges in vitro. Plant Cell, Tissue and Organ Culture, 8, 185-196. https://doi.org/10.1007/BF00040945
Aka Kaçar, Y., Biçen, B., Şimşek, Ö. Z. H. A. N., Dönmez, D., & Erol, M. (2020). Evaluation and comparison of a new type of temporary immersion system (TIS) bioreactors for myrtle (Myrtus communis L.). Applied Ecology and Environmental Research, 18(1),1611-1620. http://dx.doi.org/10.15666/aeer/1801_16111620
Akita, M., & Takayama, S. (1994). Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Reports, 13, 184-187. https://doi.org/10.1007/BF00239889
Arab, M. M., Yadollahi, A., Hosseini-Mazinani, M., & Bagheri, S. (2014). Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G× N15 (hybrid of almond× peach) rootstock. Journal of Genetic Engineering and Biotechnology12(2), 103-110. https://doi.org/10. 1016/j.jgeb.2014.10.002
Bagheri, S., Amiri, M. E., Davoodi, D. & Entesari, M. (2013). Study and comparison Jar and periodical bioreactor for mass propagation of rootstocks GF677 (Prunus amygdalus×Prunus persica). Journal of Horticultural Science, 27(1), 36-43. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.20784
Bagheri, S., Davoudi, D., Amiri, M. E., Bayanati, M. & Entesari, M. (2016). The effect of different culture media on micropropagation of GF677 rootstock (peach-almond hybrid). Horticultural Science, 30(4), 616-623. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.32259
Bahmani, R., Karami, O., & Gholami, M. (2009). Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM. 106. World Applied Sciences Journal, 6(11), 1513-1517.
Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thalianaThe Plant Cell, 23(1), 69-80. https://doi.org/10.1105/tpc.110.079079
Benelli, C., & De Carlo, A. (2018). In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform™). 3 Biotech, 8(7), 317. https://doi.org/ 10.1007/s13205-018-1346-4
Berthouly, M., Dufour, M., Alvard, D., Carasco, C., Alemanno, L., & Teisson, C. (1995, 9-14 april). Coffee micropropagation in a liquid medium using the temporary immersion technique. Seizième colloque scientifique international sur le café, Kyoto, Japon.
Cabasson, C., Alvard, D., Dambier, D., Ollitrault, P., & Teisson, C. (1997). Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50, 33-37.
Cheong, E. J., & An, C. (2015). Effect of carbohydrates on in vitro shoot growth of various Prunus species. Korean J. Plant Res28(3), 357-362. https://doi.org/ 10. 1023/A:1005896725780
Cordovilla, M. P., Bueno, M., Aparicio, C., & Urrestarazu, M. (2014). Effects of salinity and the interaction between Thymus vulgaris and Lavandula angustifolia on growth, ethylene production and essential oil contents. Journal of Plant Nutrition, 37(6), 875-888. https://doi.org/ 10.1080/01904167.2013.873462
de Paiva Neto, V. B., & Otoni, W. C. (2003). Carbon sources and their osmotic potential in plant tissue culture: does it matter? Scientia Horticulturae97(3-4), 193-202. https://doi.org/10.1016/S0304-4238(02)00231-5
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017
Egertsdotter, U., Ahmad, I., & Clapham, D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Frontiers in Plant Science, 10, 109. https://doi.org/10.3389/fpls.2019.00109
Entesari, M., Davoodi, D., Haghnazari A., Bagheri S., Majidi E. & Habashi, A. A. (2012). Effect of alternative bioreactor on propagation and microtuberization parameters of potato (Solanum tuberosum L.). Journal of Crop Breeding. 4(9), 53-67. (In Persian). https://dor.isc.ac/dor/20.1001.1.22286128.1391.4.9.5.2
Etienne, H. & Berthouly, M. (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69, 215-231. https://doi.org/10.1023/A:1015668610465
Felipe, A. J. (2009). ‘Felinem’,‘Garnem’, and ‘Monegro’ almond× peach hybrid rootstocks. HortScience, 44(1), 196-197. https://doi.org/10.21273/HORTSCI.44.1.196
Ganji Moghadam, A., Bolandi, A. R. & Anahid,  S. (2008). Invitro propagation of four selected dwarf genotypes of Mahlab. Research and Construction Journal in Natural Resources, 54, 61-79. (in Persian)
Geng, F., Moran, R., Day, M., Halteman, W., & Zhang, D. (2016). Increasing in vitro shoot elongation and proliferation of ‘G. 30’ and ‘G. 41’ apple by chilling explants and plant growth regulators. HortScience, 51(7), 899-904. https://doi.org/10.21273/HORTSCI.51.7.899
Gerdakaneh, M., Mozafari, A. A., Khalighi, A., & Sioseh-Mardah, A. (2009). The effects of carbohydrate source and concentration on somatic embryogenesis of strawberry (Fragaria× ananassa Duch.). American-Eurasian Journal of Agricultural & Environmental Sciences, 6(1), 76-80.
Huang, W. L., & Liu, L. F. (2002). Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Botanical Bulletin of Academia Sinica43: 107–113.
Ivanova, M., & Van Staden, J. (2009). Nitrogen source, concentration, and NH 4+: NO 3− ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphyllaPlant Cell, Tissue and Organ Culture (PCTOC)99, 167-174. https://doi.org/10.1007/s11240-009-9589-8
 
Kane, M.E. (2005). Shoot culture procedures (p. 154–157). In: R. Trigiano & D. Gray (eds.). Plant development and biotechnology. CRC Press, Boca Raton, FL.
Kunakhonnuruk, B., Kongbangkerd, A., & Inthima, P. (2019). Improving large-scale biomass and plumbagin production of Drosera communis A. St.-Hil. by temporary immersion system. Industrial Crops and Products, 137, 197-202. https://doi.org/10.1016/j.indcrop.2019.05.039.
Li, M., & Leung, D. W. (2000). Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiataJournal of Plant Growth Regulation19(4), 423. https://doi.org/ 10.1007/s003440000020
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01
Lotfi, M., Bayoudh, C., Werbrouck, S., & Mars, M. (2020). Effects of meta–topolin derivatives and temporary immersion on hyperhydricity and in vitro shoot proliferation in Pyrus communisPlant Cell, Tissue and Organ Culture, 143, 499-505. https://doi.org/10.1007/s11240-020-01935-x
Mahdavian, M. , Bouzari, N. & Abdollahi, H. (2010). Effects of culture media and growth regulators on proliferation and rooting of a vegetative Mahlab rootstock (SL-64). Seed and Plant Journal, 26(1), 15-26. (In Persian). https://doi.org/10.22092/spij.2017.110967
Matin, M. A., Brown, J. H., & Ferguson, H. (1989). Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy Journal, 81(1), 100-105. https://doi.org/10.2134/agronj1989.00021962008100010018x
Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6(13),1484-1492. https://doi.org/10.5897/AJB2007.000-2211
Posada-Pérez, L., Montesinos, Y. P., Guerra, D. G., Daniels, D., & Gómez-Kosky, R. (2017). Complete germination of papaya (Carica papaya L. cv. Maradol Roja) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cellular & Developmental Biology-Plant, 53, 505-513. https://doi.org/10.1007/s11627-017-9842-5
Pua, E. C., CHONG, C., & Rousselle, G. L. (1983). In vitro propagation of Ottawa 3 apple rootstock. Canadian Journal of Plant Science, 63(1), 183-188. https://doi.org/10.4141/cjps83-018
Ramage, C. M., & Williams, R. R. (2002). Mineral nutrition and plant morphogenesis. In Vitro Cellular & Developmental Biology-Plant, 38, 116-124. https://doi.org/10.1079/IVP2001269
Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Cano-Ricárdez, A., & Bello-Bello, J. J. (2019). Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). 3 Biotech9, 1-7. https://doi.org/10.1007/s13205-019-1833-2
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G., & Hernández-Rincón, E. U. (2016). Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. South African Journal of Botany, 106, 238-243. https://doi.org/10.1016/j.sajb.2016.07.015
Ramirez-Vallejo, P., & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica, 99, 127-136. https://doi.org/10.1023/A:1018353200015
Rosales, C., Brenes, J., Salas, K., Arce-Solano, S., & Abdelnour-Esquivel, A. (2018). Micropropagation of Stevia rebaudiana in temporary immersion systems as an alternative horticultural production method. Revista Chapingo. Serie Horticulturae24(1), 69-84. https://doi.org/10.5154/r.rchsh.2017.08.028
Ružić, D. V., & Vujović, T. I. (2008). The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Horticultural Science35(1), 12-21. https://doi.org/ 10.17221/646-HORTSCI
Sairam, R. K. (1994). Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology32, 594-594.
Shokri, S., Babaei, A., Ahmadian, M., Arab, M. M., & Hessami, S. (2013). The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of rose (Rosa hybrida L.) in vitro culture. In VIII International Symposium on In Vitro Culture and Horticultural Breeding 1083 (pp. 391-396). https://doi.org/ 10.17660/ActaHortic.2015.1083.49
Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., & Saraswathi, M. S. (2021). A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk). Scientific Reports, 11(1), 20371. https://doi.org/10.1038/s41598-021-99923-4
Vanstraelen, M., & Benková, E. (2012). Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology, 28, 463-487. https://doi.org/10.1146/annurev-cellbio-101011-155741
Yang, C. G., Gao, B., & Liu, J. R. (2012). Calcium ion and protocorm differentiation for Cymbidium hybrid Cymbidium Lucky Gloria× Cymbidium Lovely Moon 'Crescent'. Applied Mechanics and Materials, 195, 475-479. https://doi.org/10.4028/www.scientific.net/AMM.195-196.475
Yaseen, M., Ahmad, T., Abbasi, N. A., & Hafiz, I. A. (2009). Assessment of apple rootstocks M 9 and M 26 for in vitro rooting potential using different carbon sources. Pakistan Journal of Botany, 41(2), 769-81.
Ying-Ning, Z. O. U. (2010). Micropropagation of Chinese Plum (Prunus salicina Lindl.) using mature stem segments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca38(3), 214-218. https://doi.org/10.15835/nbha3834614
Zapata, P. J., Serrano, M., Pretel, M. T., Amorós, A., & Botella, M. Á. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science167(4), 781-788. https://doi.org/10.1016/j.plantsci.2004.05.014
Zhang, B., Song, L., Bekele, L. D., Shi, J., Jia, Q., Zhang, B., ... & Chen, J. (2018). Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Scientia Horticulturae232, 121-126. https://doi.org/10.1016/j.scienta.2018.01.007
Zhu, L. H., Li, X. Y., & Welander, M. (2005). Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. In A. K. Hvoslef-Eide & W. Preil, (eds) Liquid Culture Systems for in vitro Plant Propagation (pp. 253-261). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_17 Liquid culture systems for in vitro plant propagation,