باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1392). بررسی و مقایسه ظروف کشت رایج و بیوراکتورتناوبی جهت تکثیر انبوه پایه GF677 (هیبرید هلو× بادام).
نشریه علوم باغبانی 27 (1)، 36-43.
https://doi.org/10.22067/jhorts4.v0i0.20784
باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1395). تاثیر محیط کشتهای مختلف در ریزازدیادی پایه GF677 (هیبرید هلو - بادام). نشریه علوم باغبانی 30 (4)، 616-623. https://doi.org/10.22067/jhorts4.v0i0.32259
گنجی مقدم، ابراهیم؛ بلندی، احمد رضا و آناهید، صدیقه (1387). تکثیر درون شیشهای چهار ژنوتیپ پاکوتاه گزینش شده محلب. مجله پژوهش و سازندگی در منابع طبیعی. 79،54-61.
مهدویان، مرتضی؛ بوذری، ناصر و عبدالهی، حمید (1389). اثر محیط کشت و تنظیم کننده رشد بر پرآوری و ریشهزایی پایه رویشی محلب (سنت لوسی 64).
مجله به نژادی نهال و بذر 26 (1)، 15-26.
https://doi.org/10.22092/spij.2017.110967
REFERENCES
Abahmane, L. (2020). A comparative study between temporary immersion system and semi-solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (
Phoenix dactylifera L.) varieties
in vitro.
Notulae Scientia Biologicae, 12(2), 277-288.
https://doi.org/10.15835/nsb12210610
Aguilar, M. E., Garita, K., Kim, Y. W., Kim, J. A., & Moon, H. K. (2019). Simple protocol for the micropropagation of teak (Tectona grandis Linn.) in semi-solid and liquid media in RITA® bioreactors and ex vitro rooting. American Journal of Plant Sciences, 10(7), 1121-1141. https://doi.org/ 10.4236/ajps.2019.107081
Aitken-Christie, J., & Jones, C. (1987). Towards automation: Radiata pine shoot hedges
in vitro.
Plant Cell, Tissue and Organ Culture, 8, 185-196.
https://doi.org/10.1007/BF00040945
Aka Kaçar, Y., Biçen, B., Şimşek, Ö. Z. H. A. N., Dönmez, D., & Erol, M. (2020). Evaluation and comparison of a new type of temporary immersion system (TIS) bioreactors for myrtle (
Myrtus communis L.).
Applied Ecology and Environmental Research, 18(1),1611-1620.
http://dx.doi.org/10.15666/aeer/1801_16111620
Akita, M., & Takayama, S. (1994). Stimulation of potato (
Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control.
Plant Cell Reports, 13, 184-187.
https://doi.org/10.1007/BF00239889
Arab, M. M., Yadollahi, A., Hosseini-Mazinani, M., & Bagheri, S. (2014). Effects of antimicrobial activity of silver nanoparticles on
in vitro establishment of G× N15 (hybrid of almond× peach) rootstock.
Journal of Genetic Engineering and Biotechnology,
12(2), 103-110.
https://doi.org/10.
1016/j.jgeb.2014.10.002
Bagheri, S., Amiri, M. E., Davoodi, D. & Entesari, M. (2013). Study and comparison Jar and periodical bioreactor for mass propagation of rootstocks GF677 (
Prunus amygdalus×
Prunus persica).
Journal of Horticultural Science, 27(1), 36-43. (In Persian).
https://doi.org/10.22067/jhorts4.v0i0.20784
Bagheri, S., Davoudi, D., Amiri, M. E., Bayanati, M. & Entesari, M. (2016). The effect of different culture media on micropropagation of GF677 rootstock (peach-almond hybrid). Horticultural Science, 30(4), 616-623. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.32259
Bahmani, R., Karami, O., & Gholami, M. (2009). Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM. 106. World Applied Sciences Journal, 6(11), 1513-1517.
Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in
Arabidopsis thaliana.
The Plant Cell, 23(1), 69-80.
https://doi.org/10.1105/tpc.110.079079
Benelli, C., & De Carlo, A. (2018). In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform™). 3 Biotech, 8(7), 317. https://doi.org/ 10.1007/s13205-018-1346-4
Berthouly, M., Dufour, M., Alvard, D., Carasco, C., Alemanno, L., & Teisson, C. (1995, 9-14 april). Coffee micropropagation in a liquid medium using the temporary immersion technique. Seizième colloque scientifique international sur le café, Kyoto, Japon.
Cabasson, C., Alvard, D., Dambier, D., Ollitrault, P., & Teisson, C. (1997). Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50, 33-37.
Cheong, E. J., & An, C. (2015). Effect of carbohydrates on in vitro shoot growth of various Prunus species. Korean J. Plant Res, 28(3), 357-362. https://doi.org/ 10. 1023/A:1005896725780
Cordovilla, M. P., Bueno, M., Aparicio, C., & Urrestarazu, M. (2014). Effects of salinity and the interaction between Thymus vulgaris and Lavandula angustifolia on growth, ethylene production and essential oil contents. Journal of Plant Nutrition, 37(6), 875-888. https://doi.org/ 10.1080/01904167.2013.873462
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances.
Analytical chemistry, 28(3), 350-356.
http://dx.doi.org/10.1021/ac60111a017
Egertsdotter, U., Ahmad, I., & Clapham, D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers.
Frontiers in Plant Science, 10, 109.
https://doi.org/10.3389/fpls.2019.00109
Entesari, M., Davoodi, D., Haghnazari A., Bagheri S., Majidi E. & Habashi, A. A. (2012). Effect of alternative bioreactor on propagation and microtuberization parameters of potato (
Solanum tuberosum L.).
Journal of Crop Breeding.
4(9), 53-67. (In Persian).
https://dor.isc.ac/dor/20.1001.1.22286128.1391.4.9.5.2
Ganji Moghadam, A., Bolandi, A. R. & Anahid, S. (2008). Invitro propagation of four selected dwarf genotypes of Mahlab. Research and Construction Journal in Natural Resources, 54, 61-79. (in Persian)
Geng, F., Moran, R., Day, M., Halteman, W., & Zhang, D. (2016). Increasing
in vitro shoot elongation and proliferation of ‘G. 30’ and ‘G. 41’ apple by chilling explants and plant growth regulators.
HortScience, 51(7), 899-904.
https://doi.org/10.21273/HORTSCI.51.7.899
Gerdakaneh, M., Mozafari, A. A., Khalighi, A., & Sioseh-Mardah, A. (2009). The effects of carbohydrate source and concentration on somatic embryogenesis of strawberry (Fragaria× ananassa Duch.). American-Eurasian Journal of Agricultural & Environmental Sciences, 6(1), 76-80.
Huang, W. L., & Liu, L. F. (2002). Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Botanical Bulletin of Academia Sinica, 43: 107–113.
Ivanova, M., & Van Staden, J. (2009). Nitrogen source, concentration, and NH 4+: NO 3− ratio influence shoot regeneration and hyperhydricity in tissue cultured
Aloe polyphylla.
Plant Cell, Tissue and Organ Culture (PCTOC),
99, 167-174.
https://doi.org/10.1007/s11240-009-9589-8
Kane, M.E. (2005). Shoot culture procedures (p. 154–157). In: R. Trigiano & D. Gray (eds.). Plant development and biotechnology. CRC Press, Boca Raton, FL.
Kunakhonnuruk, B., Kongbangkerd, A., & Inthima, P. (2019). Improving large-scale biomass and plumbagin production of
Drosera communis A. St.-Hil. by temporary immersion system.
Industrial Crops and Products, 137, 197-202.
https://doi.org/10.1016/j.indcrop.2019.05.039.
Li, M., & Leung, D. W. (2000). Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. Journal of Plant Growth Regulation, 19(4), 423. https://doi.org/ 10.1007/s003440000020
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy.
Current Protocols in Food Analytical Chemistry, 1(1), F4-3.
https://doi.org/10.1002/0471142913.faf0403s01
Lotfi, M., Bayoudh, C., Werbrouck, S., & Mars, M. (2020). Effects of meta–topolin derivatives and temporary immersion on hyperhydricity and
in vitro shoot proliferation in
Pyrus communis.
Plant Cell, Tissue and Organ Culture, 143, 499-505.
https://doi.org/10.1007/s11240-020-01935-x
Mahdavian, M. , Bouzari, N. & Abdollahi, H. (2010). Effects of culture media and growth regulators on proliferation and rooting of a vegetative Mahlab rootstock (SL-64). Seed and Plant Journal, 26(1), 15-26. (In Persian). https://doi.org/10.22092/spij.2017.110967
Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization.
African Journal of Biotechnology, 6(13),1484-1492.
https://doi.org/10.5897/AJB2007.000-2211
Posada-Pérez, L., Montesinos, Y. P., Guerra, D. G., Daniels, D., & Gómez-Kosky, R. (2017). Complete germination of papaya (
Carica papaya L. cv. Maradol Roja) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium.
In Vitro Cellular & Developmental Biology-Plant, 53, 505-513.
https://doi.org/10.1007/s11627-017-9842-5
Pua, E. C., CHONG, C., & Rousselle, G. L. (1983). In vitro propagation of Ottawa 3 apple rootstock. Canadian Journal of Plant Science, 63(1), 183-188. https://doi.org/10.4141/cjps83-018
Ramage, C. M., & Williams, R. R. (2002). Mineral nutrition and plant morphogenesis.
In Vitro Cellular & Developmental Biology-Plant, 38, 116-124.
https://doi.org/10.1079/IVP2001269
Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Cano-Ricárdez, A., & Bello-Bello, J. J. (2019). Assessment of different temporary immersion systems in the micropropagation of anthurium (
Anthurium andreanum).
3 Biotech,
9, 1-7.
https://doi.org/10.1007/s13205-019-1833-2
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G., & Hernández-Rincón, E. U. (2016). Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. South African Journal of Botany, 106, 238-243. https://doi.org/10.1016/j.sajb.2016.07.015
Rosales, C., Brenes, J., Salas, K., Arce-Solano, S., & Abdelnour-Esquivel, A. (2018). Micropropagation of
Stevia rebaudiana in temporary immersion systems as an alternative horticultural production method.
Revista Chapingo. Serie Horticulturae,
24(1), 69-84.
https://doi.org/10.5154/r.rchsh.2017.08.028
Ružić, D. V., & Vujović, T. I. (2008). The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Horticultural Science, 35(1), 12-21. https://doi.org/ 10.17221/646-HORTSCI
Sairam, R. K. (1994). Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594-594.
Shokri, S., Babaei, A., Ahmadian, M., Arab, M. M., & Hessami, S. (2013). The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of rose (Rosa hybrida L.) in vitro culture. In VIII International Symposium on In Vitro Culture and Horticultural Breeding 1083 (pp. 391-396). https://doi.org/ 10.17660/ActaHortic.2015.1083.49
Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., & Saraswathi, M. S. (2021). A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk).
Scientific Reports, 11(1), 20371.
https://doi.org/10.1038/s41598-021-99923-4
Yaseen, M., Ahmad, T., Abbasi, N. A., & Hafiz, I. A. (2009). Assessment of apple rootstocks M 9 and M 26 for in vitro rooting potential using different carbon sources. Pakistan Journal of Botany, 41(2), 769-81.
Ying-Ning, Z. O. U. (2010). Micropropagation of Chinese Plum
(Prunus salicina Lindl.) using mature stem segments.
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
38(3), 214-218.
https://doi.org/10.15835/nbha3834614
Zapata, P. J., Serrano, M., Pretel, M. T., Amorós, A., & Botella, M. Á. (2004). Polyamines and ethylene changes during germination of different plant species under salinity.
Plant Science,
167(4), 781-788.
https://doi.org/10.1016/j.plantsci.2004.05.014
Zhang, B., Song, L., Bekele, L. D., Shi, J., Jia, Q., Zhang, B., ... & Chen, J. (2018). Optimizing factors affecting development and propagation of
Bletilla striata in a temporary immersion bioreactor system.
Scientia Horticulturae,
232, 121-126.
https://doi.org/10.1016/j.scienta.2018.01.007
Zhu, L. H., Li, X. Y., & Welander, M. (2005). Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. In A. K. Hvoslef-Eide & W. Preil, (eds) Liquid Culture Systems for in vitro Plant Propagation (pp. 253-261). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_17 Liquid culture systems for in vitro plant propagation,